A Brief Study on the <i>k</i>-Dimensional Repunit Sequence
In this paper, we aim to introduce and investigate the bidimensional, tridimensional and <i>k</i>-dimensional extension of Repunit numbers, with a particular focus on their recurrence relations, key properties, and various sum identities.
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/2/109 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849720299286691840 |
|---|---|
| author | Eudes A. Costa Paula M. M. C. Catarino Paulo J. M. Vasco Francisco R. V. Alves |
| author_facet | Eudes A. Costa Paula M. M. C. Catarino Paulo J. M. Vasco Francisco R. V. Alves |
| author_sort | Eudes A. Costa |
| collection | DOAJ |
| description | In this paper, we aim to introduce and investigate the bidimensional, tridimensional and <i>k</i>-dimensional extension of Repunit numbers, with a particular focus on their recurrence relations, key properties, and various sum identities. |
| format | Article |
| id | doaj-art-0a95e12d81c246e19e4666fde15c20fe |
| institution | DOAJ |
| issn | 2075-1680 |
| language | English |
| publishDate | 2025-01-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Axioms |
| spelling | doaj-art-0a95e12d81c246e19e4666fde15c20fe2025-08-20T03:11:58ZengMDPI AGAxioms2075-16802025-01-0114210910.3390/axioms14020109A Brief Study on the <i>k</i>-Dimensional Repunit SequenceEudes A. Costa0Paula M. M. C. Catarino1Paulo J. M. Vasco2Francisco R. V. Alves3Department of Mathematics, Federal University of Tocantins, Arraias 77330-000, BrazilDepartment of Mathematics, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, PortugalDepartment of Mathematics, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, PortugalDepartment of Mathematics, Federal Institute of Educations, Science and Technology of State of Cerá, Fortaleza 60040-531, BrazilIn this paper, we aim to introduce and investigate the bidimensional, tridimensional and <i>k</i>-dimensional extension of Repunit numbers, with a particular focus on their recurrence relations, key properties, and various sum identities.https://www.mdpi.com/2075-1680/14/2/109repunit sequencebidimensional sequencetridimensional sequenceBinet’s formula |
| spellingShingle | Eudes A. Costa Paula M. M. C. Catarino Paulo J. M. Vasco Francisco R. V. Alves A Brief Study on the <i>k</i>-Dimensional Repunit Sequence Axioms repunit sequence bidimensional sequence tridimensional sequence Binet’s formula |
| title | A Brief Study on the <i>k</i>-Dimensional Repunit Sequence |
| title_full | A Brief Study on the <i>k</i>-Dimensional Repunit Sequence |
| title_fullStr | A Brief Study on the <i>k</i>-Dimensional Repunit Sequence |
| title_full_unstemmed | A Brief Study on the <i>k</i>-Dimensional Repunit Sequence |
| title_short | A Brief Study on the <i>k</i>-Dimensional Repunit Sequence |
| title_sort | brief study on the i k i dimensional repunit sequence |
| topic | repunit sequence bidimensional sequence tridimensional sequence Binet’s formula |
| url | https://www.mdpi.com/2075-1680/14/2/109 |
| work_keys_str_mv | AT eudesacosta abriefstudyontheikidimensionalrepunitsequence AT paulammccatarino abriefstudyontheikidimensionalrepunitsequence AT paulojmvasco abriefstudyontheikidimensionalrepunitsequence AT franciscorvalves abriefstudyontheikidimensionalrepunitsequence AT eudesacosta briefstudyontheikidimensionalrepunitsequence AT paulammccatarino briefstudyontheikidimensionalrepunitsequence AT paulojmvasco briefstudyontheikidimensionalrepunitsequence AT franciscorvalves briefstudyontheikidimensionalrepunitsequence |