A Brief Study on the <i>k</i>-Dimensional Repunit Sequence

In this paper, we aim to introduce and investigate the bidimensional, tridimensional and <i>k</i>-dimensional extension of Repunit numbers, with a particular focus on their recurrence relations, key properties, and various sum identities.

Saved in:
Bibliographic Details
Main Authors: Eudes A. Costa, Paula M. M. C. Catarino, Paulo J. M. Vasco, Francisco R. V. Alves
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/2/109
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849720299286691840
author Eudes A. Costa
Paula M. M. C. Catarino
Paulo J. M. Vasco
Francisco R. V. Alves
author_facet Eudes A. Costa
Paula M. M. C. Catarino
Paulo J. M. Vasco
Francisco R. V. Alves
author_sort Eudes A. Costa
collection DOAJ
description In this paper, we aim to introduce and investigate the bidimensional, tridimensional and <i>k</i>-dimensional extension of Repunit numbers, with a particular focus on their recurrence relations, key properties, and various sum identities.
format Article
id doaj-art-0a95e12d81c246e19e4666fde15c20fe
institution DOAJ
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-0a95e12d81c246e19e4666fde15c20fe2025-08-20T03:11:58ZengMDPI AGAxioms2075-16802025-01-0114210910.3390/axioms14020109A Brief Study on the <i>k</i>-Dimensional Repunit SequenceEudes A. Costa0Paula M. M. C. Catarino1Paulo J. M. Vasco2Francisco R. V. Alves3Department of Mathematics, Federal University of Tocantins, Arraias 77330-000, BrazilDepartment of Mathematics, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, PortugalDepartment of Mathematics, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, PortugalDepartment of Mathematics, Federal Institute of Educations, Science and Technology of State of Cerá, Fortaleza 60040-531, BrazilIn this paper, we aim to introduce and investigate the bidimensional, tridimensional and <i>k</i>-dimensional extension of Repunit numbers, with a particular focus on their recurrence relations, key properties, and various sum identities.https://www.mdpi.com/2075-1680/14/2/109repunit sequencebidimensional sequencetridimensional sequenceBinet’s formula
spellingShingle Eudes A. Costa
Paula M. M. C. Catarino
Paulo J. M. Vasco
Francisco R. V. Alves
A Brief Study on the <i>k</i>-Dimensional Repunit Sequence
Axioms
repunit sequence
bidimensional sequence
tridimensional sequence
Binet’s formula
title A Brief Study on the <i>k</i>-Dimensional Repunit Sequence
title_full A Brief Study on the <i>k</i>-Dimensional Repunit Sequence
title_fullStr A Brief Study on the <i>k</i>-Dimensional Repunit Sequence
title_full_unstemmed A Brief Study on the <i>k</i>-Dimensional Repunit Sequence
title_short A Brief Study on the <i>k</i>-Dimensional Repunit Sequence
title_sort brief study on the i k i dimensional repunit sequence
topic repunit sequence
bidimensional sequence
tridimensional sequence
Binet’s formula
url https://www.mdpi.com/2075-1680/14/2/109
work_keys_str_mv AT eudesacosta abriefstudyontheikidimensionalrepunitsequence
AT paulammccatarino abriefstudyontheikidimensionalrepunitsequence
AT paulojmvasco abriefstudyontheikidimensionalrepunitsequence
AT franciscorvalves abriefstudyontheikidimensionalrepunitsequence
AT eudesacosta briefstudyontheikidimensionalrepunitsequence
AT paulammccatarino briefstudyontheikidimensionalrepunitsequence
AT paulojmvasco briefstudyontheikidimensionalrepunitsequence
AT franciscorvalves briefstudyontheikidimensionalrepunitsequence