An Experiment and Detection Scheme for Cavity-Based Light Cold Dark Matter Particle Searches

A resonance detection scheme and some useful ideas for cavity-based searches of light cold dark matter particles (such as axions) are presented, as an effort to aid in the on-going endeavors in this direction as well as for future experiments, especially in possibly developing a table-top experiment...

Full description

Saved in:
Bibliographic Details
Main Authors: Masroor H. S. Bukhari, Zahoor H. Shah
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2017/6432354
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A resonance detection scheme and some useful ideas for cavity-based searches of light cold dark matter particles (such as axions) are presented, as an effort to aid in the on-going endeavors in this direction as well as for future experiments, especially in possibly developing a table-top experiment. The scheme is based on our idea of a resonant detector, incorporating an integrated tunnel diode (TD) and GaAs HEMT/HFET (High-Electron Mobility Transistor/Heterogeneous FET) transistor amplifier, weakly coupled to a cavity in a strong transverse magnetic field. The TD-amplifier combination is suggested as a sensitive and simple technique to facilitate resonance detection within the cavity while maintaining excellent noise performance, whereas our proposed Halbach magnet array could serve as a low-noise and permanent solution replacing the conventional electromagnets scheme. We present some preliminary test results which demonstrate resonance detection from simulated test signals in a small optimal axion mass range with superior signal-to-noise ratios (SNR). Our suggested design also contains an overview of a simpler on-resonance dc signal read-out scheme replacing the complicated heterodyne read-out. We believe that all these factors and our propositions could possibly improve or at least simplify the resonance detection and read-out in cavity-based DM particle detection searches (and other spectroscopy applications) and reduce the complications (and associated costs), in addition to reducing the electromagnetic interference and background.
ISSN:1687-7357
1687-7365