Exploring the Structural and Traversal Properties of Total Graphs over Finite Rings

This paper extends the concept of the total graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi mathvariant="sans-serif">Γ</mi></msub><...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali Al Khabyah, Nazim, Ikram Ali
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/5/386
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper extends the concept of the total graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi mathvariant="sans-serif">Γ</mi></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> associated with a commutative ring to the three-fold Cartesian product <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mo>=</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>m</mi></msub><mo>×</mo><msub><mi mathvariant="double-struck">Z</mi><mi>p</mi></msub></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>p</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>. We present complete and self-contained proofs for a wide range of graph-theoretic properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi mathvariant="sans-serif">Γ</mi></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, including connectivity, diameter, regularity conditions, clique and independence numbers, and exact criteria for Hamiltonicity and Eulericity. We also derive improved lower bounds for the genus and characterize the automorphism group in both general and symmetric cases. Each result is illustrated through concrete numerical examples for clarity. Beyond theoretical contributions, we discuss potential applications in cryptographic key-exchange systems, fault-tolerant network architectures, and algebraic code design. This work generalizes and deepens prior studies on two-factor total graphs, and establishes a foundational framework for future exploration of higher-dimensional total graphs over finite commutative rings.
ISSN:2075-1680