A formula to calculate the spectral radius of a compact linear operator

There is a formula (Gelfand's formula) to find the spectral radius of a linear operator defined on a Banach space. That formula does not apply even in normed spaces which are not complete. In this paper we show a formula to find the spectral radius of any linear and compact operator T defined o...

Full description

Saved in:
Bibliographic Details
Main Authors: Fernando Garibay Bonales, Rigoberto Vera Mendoza
Format: Article
Language:English
Published: Wiley 1997-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171297000793
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561612654903296
author Fernando Garibay Bonales
Rigoberto Vera Mendoza
author_facet Fernando Garibay Bonales
Rigoberto Vera Mendoza
author_sort Fernando Garibay Bonales
collection DOAJ
description There is a formula (Gelfand's formula) to find the spectral radius of a linear operator defined on a Banach space. That formula does not apply even in normed spaces which are not complete. In this paper we show a formula to find the spectral radius of any linear and compact operator T defined on a complete topological vector space, locally convex. We also show an easy way to find a non-trivial T-invariant closed subspace in terms of Minkowski functional.
format Article
id doaj-art-099d8626c1374b81aece47874392b5d9
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1997-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-099d8626c1374b81aece47874392b5d92025-02-03T01:24:30ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251997-01-0120358558810.1155/S0161171297000793A formula to calculate the spectral radius of a compact linear operatorFernando Garibay Bonales0Rigoberto Vera Mendoza1Escuela de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B. Ciudad Universitaria, Morelia, Michoacán 58060, MexicoEscuela de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B. Ciudad Universitaria, Morelia, Michoacán 58060, MexicoThere is a formula (Gelfand's formula) to find the spectral radius of a linear operator defined on a Banach space. That formula does not apply even in normed spaces which are not complete. In this paper we show a formula to find the spectral radius of any linear and compact operator T defined on a complete topological vector space, locally convex. We also show an easy way to find a non-trivial T-invariant closed subspace in terms of Minkowski functional.http://dx.doi.org/10.1155/S0161171297000793compact linear operatorspectral radiuslocally convex topological linear spaceinvariant subspacenetsultimately bounded nets.
spellingShingle Fernando Garibay Bonales
Rigoberto Vera Mendoza
A formula to calculate the spectral radius of a compact linear operator
International Journal of Mathematics and Mathematical Sciences
compact linear operator
spectral radius
locally convex topological linear space
invariant subspace
nets
ultimately bounded nets.
title A formula to calculate the spectral radius of a compact linear operator
title_full A formula to calculate the spectral radius of a compact linear operator
title_fullStr A formula to calculate the spectral radius of a compact linear operator
title_full_unstemmed A formula to calculate the spectral radius of a compact linear operator
title_short A formula to calculate the spectral radius of a compact linear operator
title_sort formula to calculate the spectral radius of a compact linear operator
topic compact linear operator
spectral radius
locally convex topological linear space
invariant subspace
nets
ultimately bounded nets.
url http://dx.doi.org/10.1155/S0161171297000793
work_keys_str_mv AT fernandogaribaybonales aformulatocalculatethespectralradiusofacompactlinearoperator
AT rigobertoveramendoza aformulatocalculatethespectralradiusofacompactlinearoperator
AT fernandogaribaybonales formulatocalculatethespectralradiusofacompactlinearoperator
AT rigobertoveramendoza formulatocalculatethespectralradiusofacompactlinearoperator