Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures
Abstract Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-025-56113-4 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832594597670289408 |
---|---|
author | Zailan Zhang Alberto Zobelli Chaofeng Gao Yingchun Cheng Jiuxiang Zhang Jonathan Caillaux Lipeng Qiu Songlin Li Mattia Cattelan Viktor Kandyba Alexei Barinov Mustapha Zaghrioui Azzedine Bendounan Jean-Pascal Rueff Weiyan Qi Luca Perfetti Evangelos Papalazarou Marino Marsi Zhesheng Chen |
author_facet | Zailan Zhang Alberto Zobelli Chaofeng Gao Yingchun Cheng Jiuxiang Zhang Jonathan Caillaux Lipeng Qiu Songlin Li Mattia Cattelan Viktor Kandyba Alexei Barinov Mustapha Zaghrioui Azzedine Bendounan Jean-Pascal Rueff Weiyan Qi Luca Perfetti Evangelos Papalazarou Marino Marsi Zhesheng Chen |
author_sort | Zailan Zhang |
collection | DOAJ |
description | Abstract Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains unclear. In addition, the creation of flat bands at the valence band maximum (VBM) of TMDs is still an open challenge. In this work, we investigate the electronic structure of monolayer MoS2-black phosphorus heterojunctions with a combined experimental and theoretical approach. The disruption of the rotational symmetry of the MoS2 bands, the creation of anisotropic minigaps and the appearance of flat bands at the Γ valley, accompanied by the switch of VBM from K to Γ, are clearly observed with micro-ARPES. Unfolded band structures obtained from first principles simulations precisely describe these multiple effects – all independent of the twist angle – and demonstrates that they arise from strong band hybridization between Mo $${d}_{{z}^{2}}$$ d z 2 and P $${p}_{x}$$ p x orbitals. The underlying physics revealed by our results paves the way for innovative electronics and optoelectronics based on TMDs superlattices, adding further flexibility to the approaches adopted in twisted hexagonal superlattices. |
format | Article |
id | doaj-art-0998d6b56ddc46b989b4b5cd6d84b1fd |
institution | Kabale University |
issn | 2041-1723 |
language | English |
publishDate | 2025-01-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Nature Communications |
spelling | doaj-art-0998d6b56ddc46b989b4b5cd6d84b1fd2025-01-19T12:29:52ZengNature PortfolioNature Communications2041-17232025-01-011611810.1038/s41467-025-56113-4Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructuresZailan Zhang0Alberto Zobelli1Chaofeng Gao2Yingchun Cheng3Jiuxiang Zhang4Jonathan Caillaux5Lipeng Qiu6Songlin Li7Mattia Cattelan8Viktor Kandyba9Alexei Barinov10Mustapha Zaghrioui11Azzedine Bendounan12Jean-Pascal Rueff13Weiyan Qi14Luca Perfetti15Evangelos Papalazarou16Marino Marsi17Zhesheng Chen18School of Physics, Nanjing University of Science and TechnologyLaboratoire de Physique des Solides, CNRS, Université Paris-SaclayKey Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech UniversityKey Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech UniversityLaboratoire de Physique des Solides, CNRS, Université Paris-SaclayLaboratoire de Physique des Solides, CNRS, Université Paris-SaclayNational Laboratory of Solid State Microstructures, and School of Electronic Science and Engineering, Nanjing UniversityNational Laboratory of Solid State Microstructures, and School of Electronic Science and Engineering, Nanjing UniversityElettra-Sincrotrone Trieste SCpAElettra-Sincrotrone Trieste SCpAElettra-Sincrotrone Trieste SCpALaboratoire GREMAN CNRS-UMR 7347 IUT de BLOISSociété Civile Synchrotron Soleil, L’Orme des MerisiersSociété Civile Synchrotron Soleil, L’Orme des MerisiersLaboratoire des Solides Irradiés, CEA/DRF/lRAMIS, Ecole Polytechnique, CNRS, Institut Polytechnique de ParisLaboratoire des Solides Irradiés, CEA/DRF/lRAMIS, Ecole Polytechnique, CNRS, Institut Polytechnique de ParisLaboratoire de Physique des Solides, CNRS, Université Paris-SaclayLaboratoire de Physique des Solides, CNRS, Université Paris-SaclaySchool of Material Science and Engineering, Nanjing University of Science and TechnologyAbstract Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains unclear. In addition, the creation of flat bands at the valence band maximum (VBM) of TMDs is still an open challenge. In this work, we investigate the electronic structure of monolayer MoS2-black phosphorus heterojunctions with a combined experimental and theoretical approach. The disruption of the rotational symmetry of the MoS2 bands, the creation of anisotropic minigaps and the appearance of flat bands at the Γ valley, accompanied by the switch of VBM from K to Γ, are clearly observed with micro-ARPES. Unfolded band structures obtained from first principles simulations precisely describe these multiple effects – all independent of the twist angle – and demonstrates that they arise from strong band hybridization between Mo $${d}_{{z}^{2}}$$ d z 2 and P $${p}_{x}$$ p x orbitals. The underlying physics revealed by our results paves the way for innovative electronics and optoelectronics based on TMDs superlattices, adding further flexibility to the approaches adopted in twisted hexagonal superlattices.https://doi.org/10.1038/s41467-025-56113-4 |
spellingShingle | Zailan Zhang Alberto Zobelli Chaofeng Gao Yingchun Cheng Jiuxiang Zhang Jonathan Caillaux Lipeng Qiu Songlin Li Mattia Cattelan Viktor Kandyba Alexei Barinov Mustapha Zaghrioui Azzedine Bendounan Jean-Pascal Rueff Weiyan Qi Luca Perfetti Evangelos Papalazarou Marino Marsi Zhesheng Chen Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures Nature Communications |
title | Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures |
title_full | Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures |
title_fullStr | Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures |
title_full_unstemmed | Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures |
title_short | Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures |
title_sort | rotation symmetry mismatch and interlayer hybridization in mos2 black phosphorus van der waals heterostructures |
url | https://doi.org/10.1038/s41467-025-56113-4 |
work_keys_str_mv | AT zailanzhang rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT albertozobelli rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT chaofenggao rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT yingchuncheng rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT jiuxiangzhang rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT jonathancaillaux rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT lipengqiu rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT songlinli rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT mattiacattelan rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT viktorkandyba rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT alexeibarinov rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT mustaphazaghrioui rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT azzedinebendounan rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT jeanpascalrueff rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT weiyanqi rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT lucaperfetti rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT evangelospapalazarou rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT marinomarsi rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures AT zheshengchen rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures |