Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures

Abstract Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains...

Full description

Saved in:
Bibliographic Details
Main Authors: Zailan Zhang, Alberto Zobelli, Chaofeng Gao, Yingchun Cheng, Jiuxiang Zhang, Jonathan Caillaux, Lipeng Qiu, Songlin Li, Mattia Cattelan, Viktor Kandyba, Alexei Barinov, Mustapha Zaghrioui, Azzedine Bendounan, Jean-Pascal Rueff, Weiyan Qi, Luca Perfetti, Evangelos Papalazarou, Marino Marsi, Zhesheng Chen
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56113-4
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832594597670289408
author Zailan Zhang
Alberto Zobelli
Chaofeng Gao
Yingchun Cheng
Jiuxiang Zhang
Jonathan Caillaux
Lipeng Qiu
Songlin Li
Mattia Cattelan
Viktor Kandyba
Alexei Barinov
Mustapha Zaghrioui
Azzedine Bendounan
Jean-Pascal Rueff
Weiyan Qi
Luca Perfetti
Evangelos Papalazarou
Marino Marsi
Zhesheng Chen
author_facet Zailan Zhang
Alberto Zobelli
Chaofeng Gao
Yingchun Cheng
Jiuxiang Zhang
Jonathan Caillaux
Lipeng Qiu
Songlin Li
Mattia Cattelan
Viktor Kandyba
Alexei Barinov
Mustapha Zaghrioui
Azzedine Bendounan
Jean-Pascal Rueff
Weiyan Qi
Luca Perfetti
Evangelos Papalazarou
Marino Marsi
Zhesheng Chen
author_sort Zailan Zhang
collection DOAJ
description Abstract Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains unclear. In addition, the creation of flat bands at the valence band maximum (VBM) of TMDs is still an open challenge. In this work, we investigate the electronic structure of monolayer MoS2-black phosphorus heterojunctions with a combined experimental and theoretical approach. The disruption of the rotational symmetry of the MoS2 bands, the creation of anisotropic minigaps and the appearance of flat bands at the Γ valley, accompanied by the switch of VBM from K to Γ, are clearly observed with micro-ARPES. Unfolded band structures obtained from first principles simulations precisely describe these multiple effects – all independent of the twist angle – and demonstrates that they arise from strong band hybridization between Mo $${d}_{{z}^{2}}$$ d z 2 and P $${p}_{x}$$ p x orbitals. The underlying physics revealed by our results paves the way for innovative electronics and optoelectronics based on TMDs superlattices, adding further flexibility to the approaches adopted in twisted hexagonal superlattices.
format Article
id doaj-art-0998d6b56ddc46b989b4b5cd6d84b1fd
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-0998d6b56ddc46b989b4b5cd6d84b1fd2025-01-19T12:29:52ZengNature PortfolioNature Communications2041-17232025-01-011611810.1038/s41467-025-56113-4Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructuresZailan Zhang0Alberto Zobelli1Chaofeng Gao2Yingchun Cheng3Jiuxiang Zhang4Jonathan Caillaux5Lipeng Qiu6Songlin Li7Mattia Cattelan8Viktor Kandyba9Alexei Barinov10Mustapha Zaghrioui11Azzedine Bendounan12Jean-Pascal Rueff13Weiyan Qi14Luca Perfetti15Evangelos Papalazarou16Marino Marsi17Zhesheng Chen18School of Physics, Nanjing University of Science and TechnologyLaboratoire de Physique des Solides, CNRS, Université Paris-SaclayKey Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech UniversityKey Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech UniversityLaboratoire de Physique des Solides, CNRS, Université Paris-SaclayLaboratoire de Physique des Solides, CNRS, Université Paris-SaclayNational Laboratory of Solid State Microstructures, and School of Electronic Science and Engineering, Nanjing UniversityNational Laboratory of Solid State Microstructures, and School of Electronic Science and Engineering, Nanjing UniversityElettra-Sincrotrone Trieste SCpAElettra-Sincrotrone Trieste SCpAElettra-Sincrotrone Trieste SCpALaboratoire GREMAN CNRS-UMR 7347 IUT de BLOISSociété Civile Synchrotron Soleil, L’Orme des MerisiersSociété Civile Synchrotron Soleil, L’Orme des MerisiersLaboratoire des Solides Irradiés, CEA/DRF/lRAMIS, Ecole Polytechnique, CNRS, Institut Polytechnique de ParisLaboratoire des Solides Irradiés, CEA/DRF/lRAMIS, Ecole Polytechnique, CNRS, Institut Polytechnique de ParisLaboratoire de Physique des Solides, CNRS, Université Paris-SaclayLaboratoire de Physique des Solides, CNRS, Université Paris-SaclaySchool of Material Science and Engineering, Nanjing University of Science and TechnologyAbstract Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains unclear. In addition, the creation of flat bands at the valence band maximum (VBM) of TMDs is still an open challenge. In this work, we investigate the electronic structure of monolayer MoS2-black phosphorus heterojunctions with a combined experimental and theoretical approach. The disruption of the rotational symmetry of the MoS2 bands, the creation of anisotropic minigaps and the appearance of flat bands at the Γ valley, accompanied by the switch of VBM from K to Γ, are clearly observed with micro-ARPES. Unfolded band structures obtained from first principles simulations precisely describe these multiple effects – all independent of the twist angle – and demonstrates that they arise from strong band hybridization between Mo $${d}_{{z}^{2}}$$ d z 2 and P $${p}_{x}$$ p x orbitals. The underlying physics revealed by our results paves the way for innovative electronics and optoelectronics based on TMDs superlattices, adding further flexibility to the approaches adopted in twisted hexagonal superlattices.https://doi.org/10.1038/s41467-025-56113-4
spellingShingle Zailan Zhang
Alberto Zobelli
Chaofeng Gao
Yingchun Cheng
Jiuxiang Zhang
Jonathan Caillaux
Lipeng Qiu
Songlin Li
Mattia Cattelan
Viktor Kandyba
Alexei Barinov
Mustapha Zaghrioui
Azzedine Bendounan
Jean-Pascal Rueff
Weiyan Qi
Luca Perfetti
Evangelos Papalazarou
Marino Marsi
Zhesheng Chen
Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures
Nature Communications
title Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures
title_full Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures
title_fullStr Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures
title_full_unstemmed Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures
title_short Rotation symmetry mismatch and interlayer hybridization in MoS2-black phosphorus van der Waals heterostructures
title_sort rotation symmetry mismatch and interlayer hybridization in mos2 black phosphorus van der waals heterostructures
url https://doi.org/10.1038/s41467-025-56113-4
work_keys_str_mv AT zailanzhang rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT albertozobelli rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT chaofenggao rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT yingchuncheng rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT jiuxiangzhang rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT jonathancaillaux rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT lipengqiu rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT songlinli rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT mattiacattelan rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT viktorkandyba rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT alexeibarinov rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT mustaphazaghrioui rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT azzedinebendounan rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT jeanpascalrueff rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT weiyanqi rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT lucaperfetti rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT evangelospapalazarou rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT marinomarsi rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures
AT zheshengchen rotationsymmetrymismatchandinterlayerhybridizationinmos2blackphosphorusvanderwaalsheterostructures