Quantum Circuit for Imputation of Missing Data

The imputation of missing data is a common procedure in data analysis that consists in predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit for the imputation of missing data. We construct variational quantum circuits with gates complexity <i...

Full description

Saved in:
Bibliographic Details
Main Authors: Claudio Sanavio, Simone Tibaldi, Edoardo Tignone, Elisa Ercolessi
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Transactions on Quantum Engineering
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10643709/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832583957846163456
author Claudio Sanavio
Simone Tibaldi
Edoardo Tignone
Elisa Ercolessi
author_facet Claudio Sanavio
Simone Tibaldi
Edoardo Tignone
Elisa Ercolessi
author_sort Claudio Sanavio
collection DOAJ
description The imputation of missing data is a common procedure in data analysis that consists in predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit for the imputation of missing data. We construct variational quantum circuits with gates complexity <inline-formula><tex-math notation="LaTeX">$\mathcal {O}(N)$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$\mathcal {O}(N^{2})$</tex-math></inline-formula> that return the last missing bit of a binary string for a specific distribution. We train and test the performance of the algorithms on a series of datasets finding good convergence of the results. Finally, we test the circuit for generalization to unseen data. For simple systems, we are able to describe the circuit analytically, making it possible to skip the tedious and unresolved problem of training the circuit with repetitive measurements. We find beforehand the optimal values of the parameters and make use of them to construct an optimal circuit suited to the generation of truly random data.
format Article
id doaj-art-0947b252e5dd42b0a3791ac61ee67ad5
institution Kabale University
issn 2689-1808
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Transactions on Quantum Engineering
spelling doaj-art-0947b252e5dd42b0a3791ac61ee67ad52025-01-28T00:02:29ZengIEEEIEEE Transactions on Quantum Engineering2689-18082024-01-01511210.1109/TQE.2024.344787510643709Quantum Circuit for Imputation of Missing DataClaudio Sanavio0https://orcid.org/0000-0002-5728-3289Simone Tibaldi1https://orcid.org/0000-0002-9257-5199Edoardo Tignone2https://orcid.org/0000-0002-8626-6744Elisa Ercolessi3https://orcid.org/0000-0002-6801-5976Fondazione Istituto Italiano di Tecnologia, Center for Life Nano-Neuroscience at la Sapienza, Roma, ItalyDipartimento di Fisica e Astronomia dell&#x0027;Universit&#x00E0; di Bologna, Bologna, ItalyLeith&#x00E1; S.r.l., Unipol Group, Bologna, ItalyDipartimento di Fisica e Astronomia dell&#x0027;Universit&#x00E0; di Bologna, Bologna, ItalyThe imputation of missing data is a common procedure in data analysis that consists in predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit for the imputation of missing data. We construct variational quantum circuits with gates complexity <inline-formula><tex-math notation="LaTeX">$\mathcal {O}(N)$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$\mathcal {O}(N^{2})$</tex-math></inline-formula> that return the last missing bit of a binary string for a specific distribution. We train and test the performance of the algorithms on a series of datasets finding good convergence of the results. Finally, we test the circuit for generalization to unseen data. For simple systems, we are able to describe the circuit analytically, making it possible to skip the tedious and unresolved problem of training the circuit with repetitive measurements. We find beforehand the optimal values of the parameters and make use of them to construct an optimal circuit suited to the generation of truly random data.https://ieeexplore.ieee.org/document/10643709/Imputation missing dataquantum computingvariational quantum circuit
spellingShingle Claudio Sanavio
Simone Tibaldi
Edoardo Tignone
Elisa Ercolessi
Quantum Circuit for Imputation of Missing Data
IEEE Transactions on Quantum Engineering
Imputation missing data
quantum computing
variational quantum circuit
title Quantum Circuit for Imputation of Missing Data
title_full Quantum Circuit for Imputation of Missing Data
title_fullStr Quantum Circuit for Imputation of Missing Data
title_full_unstemmed Quantum Circuit for Imputation of Missing Data
title_short Quantum Circuit for Imputation of Missing Data
title_sort quantum circuit for imputation of missing data
topic Imputation missing data
quantum computing
variational quantum circuit
url https://ieeexplore.ieee.org/document/10643709/
work_keys_str_mv AT claudiosanavio quantumcircuitforimputationofmissingdata
AT simonetibaldi quantumcircuitforimputationofmissingdata
AT edoardotignone quantumcircuitforimputationofmissingdata
AT elisaercolessi quantumcircuitforimputationofmissingdata