A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems

The progress of metaheuristic techniques, big data, and the Internet of things generates opportunities to performance improvements in complex industrial systems. This article explores the application of Big Data techniques in the implementation of metaheuristic algorithms with the purpose of applyin...

Full description

Saved in:
Bibliographic Details
Main Authors: José García, Francisco Altimiras, Alvaro Peña, Gino Astorga, Oscar Peredo
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2018/8395193
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556260688396288
author José García
Francisco Altimiras
Alvaro Peña
Gino Astorga
Oscar Peredo
author_facet José García
Francisco Altimiras
Alvaro Peña
Gino Astorga
Oscar Peredo
author_sort José García
collection DOAJ
description The progress of metaheuristic techniques, big data, and the Internet of things generates opportunities to performance improvements in complex industrial systems. This article explores the application of Big Data techniques in the implementation of metaheuristic algorithms with the purpose of applying it to decision-making in industrial processes. This exploration intends to evaluate the quality of the results and convergence times of the algorithm under different conditions in the number of solutions and the processing capacity. Under what conditions can we obtain acceptable results in an adequate number of iterations? In this article, we propose a cuckoo search binary algorithm using the MapReduce programming paradigm implemented in the Apache Spark tool. The algorithm is applied to different instances of the crew scheduling problem. The experiments show that the conditions for obtaining suitable results and iterations are specific to each problem and are not always satisfactory.
format Article
id doaj-art-08fc3521357846e48a8a2a541db3ac04
institution Kabale University
issn 1076-2787
1099-0526
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Complexity
spelling doaj-art-08fc3521357846e48a8a2a541db3ac042025-02-03T05:45:48ZengWileyComplexity1076-27871099-05262018-01-01201810.1155/2018/83951938395193A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling ProblemsJosé García0Francisco Altimiras1Alvaro Peña2Gino Astorga3Oscar Peredo4Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, ChileTelefónica Investigación y Desarrollo, Santiago, ChileEscuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, ChileUniversidad de Valparaíso, 2361864 Valparaíso, ChileTelefónica Investigación y Desarrollo, Santiago, ChileThe progress of metaheuristic techniques, big data, and the Internet of things generates opportunities to performance improvements in complex industrial systems. This article explores the application of Big Data techniques in the implementation of metaheuristic algorithms with the purpose of applying it to decision-making in industrial processes. This exploration intends to evaluate the quality of the results and convergence times of the algorithm under different conditions in the number of solutions and the processing capacity. Under what conditions can we obtain acceptable results in an adequate number of iterations? In this article, we propose a cuckoo search binary algorithm using the MapReduce programming paradigm implemented in the Apache Spark tool. The algorithm is applied to different instances of the crew scheduling problem. The experiments show that the conditions for obtaining suitable results and iterations are specific to each problem and are not always satisfactory.http://dx.doi.org/10.1155/2018/8395193
spellingShingle José García
Francisco Altimiras
Alvaro Peña
Gino Astorga
Oscar Peredo
A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems
Complexity
title A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems
title_full A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems
title_fullStr A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems
title_full_unstemmed A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems
title_short A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems
title_sort binary cuckoo search big data algorithm applied to large scale crew scheduling problems
url http://dx.doi.org/10.1155/2018/8395193
work_keys_str_mv AT josegarcia abinarycuckoosearchbigdataalgorithmappliedtolargescalecrewschedulingproblems
AT franciscoaltimiras abinarycuckoosearchbigdataalgorithmappliedtolargescalecrewschedulingproblems
AT alvaropena abinarycuckoosearchbigdataalgorithmappliedtolargescalecrewschedulingproblems
AT ginoastorga abinarycuckoosearchbigdataalgorithmappliedtolargescalecrewschedulingproblems
AT oscarperedo abinarycuckoosearchbigdataalgorithmappliedtolargescalecrewschedulingproblems
AT josegarcia binarycuckoosearchbigdataalgorithmappliedtolargescalecrewschedulingproblems
AT franciscoaltimiras binarycuckoosearchbigdataalgorithmappliedtolargescalecrewschedulingproblems
AT alvaropena binarycuckoosearchbigdataalgorithmappliedtolargescalecrewschedulingproblems
AT ginoastorga binarycuckoosearchbigdataalgorithmappliedtolargescalecrewschedulingproblems
AT oscarperedo binarycuckoosearchbigdataalgorithmappliedtolargescalecrewschedulingproblems