Multilocal invariants for the classical groups

Multilocal higher-order invariants, which are higher-order invariants defined at distinct points of representation space, for the classical groups are derived in a systematic way. The basic invariants for the classical groups are the well-known polynomial or rational invariants as derived from the C...

Full description

Saved in:
Bibliographic Details
Main Author: Paul F. Dhooghe
Format: Article
Language:English
Published: Wiley 2003-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S016117120301233X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multilocal higher-order invariants, which are higher-order invariants defined at distinct points of representation space, for the classical groups are derived in a systematic way. The basic invariants for the classical groups are the well-known polynomial or rational invariants as derived from the Capelli identities. Higher-order invariants are then constructed from the former ones by means of total derivatives. At each order, it appears that the invariants obtained in this way do not generate all invariants. The necessary additional invariants are constructed from the invariant polynomials on the Lie algebra of the Lie transformation groups.
ISSN:0161-1712
1687-0425