Effect of Internal Technological Defects and Loading Waveform on Structural Composite Fatigue Life

This paper explores the effect of internal technological defects on the fatigue life of carbon fiber reinforced plastic (CFRP) under simple loading waveforms. One conducted experiments on CFRP specimens with embedded artificial defects, including delamination’s (circular dry-spot) and wrinkling. Fo...

Full description

Saved in:
Bibliographic Details
Main Authors: Anastasia Lykova, Dmitriy Lobanov, Alexander Pankov, Mikhail Ugolnikov
Format: Article
Language:English
Published: Gruppo Italiano Frattura 2024-10-01
Series:Fracture and Structural Integrity
Subjects:
Online Access:https://fracturae.com/index.php/fis/article/view/5122
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper explores the effect of internal technological defects on the fatigue life of carbon fiber reinforced plastic (CFRP) under simple loading waveforms. One conducted experiments on CFRP specimens with embedded artificial defects, including delamination’s (circular dry-spot) and wrinkling. Following quasi-static tests, one developed a fatigue testing program using triangular and sine waveforms. The findings indicate that these simple waveforms do not significantly affect the fatigue resistance of defect-free CFRP or CFRP with internal technological defects. The presence of the wrinkling defect significantly diminishes the fatigue resistance of CFRP. However, constructing fatigue life curves in relative terms reveals that the reduction in fatigue properties is directly related to a decrease in strength properties. In the case of delamination (dry-spot) defects, a reduction in fatigue life by approximately 2.5 times was observed across the tested range.
ISSN:1971-8993