Investigation on Crack Coalescence Behaviors for Granite Containing Two Flaws Induced by Cyclic Freeze-Thaw and Uniaxial Deformation in Beizhan Iron Mining, Xinjing, China

This work is aimed at investigating the effect of freeze-thaw (F-T) cycle on the crack coalescence behavior for granite samples containing two unparallel flaws under uniaxial compression. The flaw geometry in the samples was a combination of an upper inclined flaw with a horizontal flaw underneath....

Full description

Saved in:
Bibliographic Details
Main Authors: Y. Wang, C. H. Li
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Geofluids
Online Access:http://dx.doi.org/10.1155/2020/7016823
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832566257565564928
author Y. Wang
C. H. Li
author_facet Y. Wang
C. H. Li
author_sort Y. Wang
collection DOAJ
description This work is aimed at investigating the effect of freeze-thaw (F-T) cycle on the crack coalescence behavior for granite samples containing two unparallel flaws under uniaxial compression. The flaw geometry in the samples was a combination of an upper inclined flaw with a horizontal flaw underneath. After the uniaxial compression experiments, macroscopic crack pattern description and the mesoscopic posttest CT imaging were used to reveal the effects of F-T cycle on the crack coalescence morphology at the rock bridge area. Results show that the stress–strain curves present a fluctuating growth trend and stress drop phenomenon becomes weaker with increasing F-T cycles. In addition, three different kinds of cracks (tensile-wing cracks, oblique shear cracks, and antiwing cracks) were observed, and the crack coalescence pattern was influenced by the F-T cycles and approach angle. A mix of tensile and shear failure occurs for the sample subjected to weak F-T treatment, and simple tensile failure occurs for the sample subjected to high F-T treatment. Moreover, CT imaging reveals a crack network pattern at the rock bridge area, and it is found that the fracture degree deceases with increasing F-T cycles and increases with the increasing approach angle. It suggests that the rock bridge area can be easily fractured for the sample subjected to high F-T cycles. Results of this study can provide theoretical foundation for the instability predication of fractured rock structures in cold regions.
format Article
id doaj-art-08afeb33a31248baa31504e10c73aac4
institution Kabale University
issn 1468-8115
1468-8123
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series Geofluids
spelling doaj-art-08afeb33a31248baa31504e10c73aac42025-02-03T01:04:39ZengWileyGeofluids1468-81151468-81232020-01-01202010.1155/2020/70168237016823Investigation on Crack Coalescence Behaviors for Granite Containing Two Flaws Induced by Cyclic Freeze-Thaw and Uniaxial Deformation in Beizhan Iron Mining, Xinjing, ChinaY. Wang0C. H. Li1Beijing Key Laboratory of Urban Underground Space Engineering, Department of Civil Engineering, School of Civil & Resource Engineering, University of Science & Technology Beijing, Beijing 100083, ChinaBeijing Key Laboratory of Urban Underground Space Engineering, Department of Civil Engineering, School of Civil & Resource Engineering, University of Science & Technology Beijing, Beijing 100083, ChinaThis work is aimed at investigating the effect of freeze-thaw (F-T) cycle on the crack coalescence behavior for granite samples containing two unparallel flaws under uniaxial compression. The flaw geometry in the samples was a combination of an upper inclined flaw with a horizontal flaw underneath. After the uniaxial compression experiments, macroscopic crack pattern description and the mesoscopic posttest CT imaging were used to reveal the effects of F-T cycle on the crack coalescence morphology at the rock bridge area. Results show that the stress–strain curves present a fluctuating growth trend and stress drop phenomenon becomes weaker with increasing F-T cycles. In addition, three different kinds of cracks (tensile-wing cracks, oblique shear cracks, and antiwing cracks) were observed, and the crack coalescence pattern was influenced by the F-T cycles and approach angle. A mix of tensile and shear failure occurs for the sample subjected to weak F-T treatment, and simple tensile failure occurs for the sample subjected to high F-T treatment. Moreover, CT imaging reveals a crack network pattern at the rock bridge area, and it is found that the fracture degree deceases with increasing F-T cycles and increases with the increasing approach angle. It suggests that the rock bridge area can be easily fractured for the sample subjected to high F-T cycles. Results of this study can provide theoretical foundation for the instability predication of fractured rock structures in cold regions.http://dx.doi.org/10.1155/2020/7016823
spellingShingle Y. Wang
C. H. Li
Investigation on Crack Coalescence Behaviors for Granite Containing Two Flaws Induced by Cyclic Freeze-Thaw and Uniaxial Deformation in Beizhan Iron Mining, Xinjing, China
Geofluids
title Investigation on Crack Coalescence Behaviors for Granite Containing Two Flaws Induced by Cyclic Freeze-Thaw and Uniaxial Deformation in Beizhan Iron Mining, Xinjing, China
title_full Investigation on Crack Coalescence Behaviors for Granite Containing Two Flaws Induced by Cyclic Freeze-Thaw and Uniaxial Deformation in Beizhan Iron Mining, Xinjing, China
title_fullStr Investigation on Crack Coalescence Behaviors for Granite Containing Two Flaws Induced by Cyclic Freeze-Thaw and Uniaxial Deformation in Beizhan Iron Mining, Xinjing, China
title_full_unstemmed Investigation on Crack Coalescence Behaviors for Granite Containing Two Flaws Induced by Cyclic Freeze-Thaw and Uniaxial Deformation in Beizhan Iron Mining, Xinjing, China
title_short Investigation on Crack Coalescence Behaviors for Granite Containing Two Flaws Induced by Cyclic Freeze-Thaw and Uniaxial Deformation in Beizhan Iron Mining, Xinjing, China
title_sort investigation on crack coalescence behaviors for granite containing two flaws induced by cyclic freeze thaw and uniaxial deformation in beizhan iron mining xinjing china
url http://dx.doi.org/10.1155/2020/7016823
work_keys_str_mv AT ywang investigationoncrackcoalescencebehaviorsforgranitecontainingtwoflawsinducedbycyclicfreezethawanduniaxialdeformationinbeizhanironminingxinjingchina
AT chli investigationoncrackcoalescencebehaviorsforgranitecontainingtwoflawsinducedbycyclicfreezethawanduniaxialdeformationinbeizhanironminingxinjingchina