Nonparametric Probabilistic Prediction of Ultra-Short-Term Wind Power Based on MultiFusion–ChronoNet–AMC
Accurate forecasting is crucial for enhancing the flexibility and controllability of power grids. Traditional forecasting methods mainly focus on modeling based on a single data source, which leads to an inability to fully capture the underlying relationships in wind power data. In addition, current...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/7/1646 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Accurate forecasting is crucial for enhancing the flexibility and controllability of power grids. Traditional forecasting methods mainly focus on modeling based on a single data source, which leads to an inability to fully capture the underlying relationships in wind power data. In addition, current models often lack dynamic adaptability to data characteristics, resulting in lower prediction accuracy and reliability under different time periods or weather conditions. To address the aforementioned issues, an ultra-short-term hybrid probabilistic prediction model based on MultiFusion, ChronoNet, and adaptive Monte Carlo (AMC) is proposed in this paper. By combining multi-source data fusion and a multiple-gated structure, the nonlinear characteristics and uncertainties of wind power under various input conditions are effectively captured by this model. Additionally, the AMC method is applied in this paper to provide comprehensive, accurate, and flexible ultra-short-term probabilistic predictions. Ultimately, experiments are conducted on multiple datasets, and the results show that the proposed model not only improves the accuracy of deterministic prediction but also enhances the reliability of probabilistic prediction intervals. |
|---|---|
| ISSN: | 1996-1073 |