Nonparametric Probabilistic Prediction of Ultra-Short-Term Wind Power Based on MultiFusion–ChronoNet–AMC

Accurate forecasting is crucial for enhancing the flexibility and controllability of power grids. Traditional forecasting methods mainly focus on modeling based on a single data source, which leads to an inability to fully capture the underlying relationships in wind power data. In addition, current...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan Yan, Yong Qian, Yan Zhou
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/7/1646
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate forecasting is crucial for enhancing the flexibility and controllability of power grids. Traditional forecasting methods mainly focus on modeling based on a single data source, which leads to an inability to fully capture the underlying relationships in wind power data. In addition, current models often lack dynamic adaptability to data characteristics, resulting in lower prediction accuracy and reliability under different time periods or weather conditions. To address the aforementioned issues, an ultra-short-term hybrid probabilistic prediction model based on MultiFusion, ChronoNet, and adaptive Monte Carlo (AMC) is proposed in this paper. By combining multi-source data fusion and a multiple-gated structure, the nonlinear characteristics and uncertainties of wind power under various input conditions are effectively captured by this model. Additionally, the AMC method is applied in this paper to provide comprehensive, accurate, and flexible ultra-short-term probabilistic predictions. Ultimately, experiments are conducted on multiple datasets, and the results show that the proposed model not only improves the accuracy of deterministic prediction but also enhances the reliability of probabilistic prediction intervals.
ISSN:1996-1073