Simultaneous Measurement of In-Plane and Out-of-Plane Displacements Using Talbot Fringe Projection
The fringe projection technique has been widely used in optical measurements. In this paper, we demonstrate a scheme to measure the 3D displacement of a deformed sample using Talbot fringe projection. In this process, we designed a two-dimensional square Talbot hologram. In this approach, we used th...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | International Journal of Optics |
Online Access: | http://dx.doi.org/10.1155/2020/5453475 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The fringe projection technique has been widely used in optical measurements. In this paper, we demonstrate a scheme to measure the 3D displacement of a deformed sample using Talbot fringe projection. In this process, we designed a two-dimensional square Talbot hologram. In this approach, we used the basic principle of triangulation, and a computer-controlled liquid crystal spatial light modulator (LC-SLM) was placed in the optical path. The Talbot array hologram was displayed on the LC-SLM screen and projected onto the surface of a sample. Two patterns were recorded: one before and one after deformation. We simultaneously acquired the in-plane and out-of-plane displacements using the digital image correlation (DIC) method. This scheme is simple and easily implemented. Theoretical and experimental results are presented. |
---|---|
ISSN: | 1687-9384 1687-9392 |