Homotopy Characterization of ANR Function Spaces

Let Y be an absolute neighbourhood retract (ANR) for the class of metric spaces and let X be a topological space. Let YX denote the space of continuous maps from X to Y equipped with the compact open topology. We show that if X is a compactly generated Tychonoff space and Y is not discrete, then YX...

Full description

Saved in:
Bibliographic Details
Main Author: Jaka Smrekar
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2013/925742
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832551437335265280
author Jaka Smrekar
author_facet Jaka Smrekar
author_sort Jaka Smrekar
collection DOAJ
description Let Y be an absolute neighbourhood retract (ANR) for the class of metric spaces and let X be a topological space. Let YX denote the space of continuous maps from X to Y equipped with the compact open topology. We show that if X is a compactly generated Tychonoff space and Y is not discrete, then YX is an ANR for metric spaces if and only if X is hemicompact and YX has the homotopy type of a CW complex.
format Article
id doaj-art-0860d022a17b43b7936f2c35fe801fd5
institution Kabale University
issn 0972-6802
1758-4965
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces and Applications
spelling doaj-art-0860d022a17b43b7936f2c35fe801fd52025-02-03T06:01:26ZengWileyJournal of Function Spaces and Applications0972-68021758-49652013-01-01201310.1155/2013/925742925742Homotopy Characterization of ANR Function SpacesJaka Smrekar0Fakulteta za Matematiko in Fiziko, Jadranska Ulica 19, 1111 Ljubljana, SloveniaLet Y be an absolute neighbourhood retract (ANR) for the class of metric spaces and let X be a topological space. Let YX denote the space of continuous maps from X to Y equipped with the compact open topology. We show that if X is a compactly generated Tychonoff space and Y is not discrete, then YX is an ANR for metric spaces if and only if X is hemicompact and YX has the homotopy type of a CW complex.http://dx.doi.org/10.1155/2013/925742
spellingShingle Jaka Smrekar
Homotopy Characterization of ANR Function Spaces
Journal of Function Spaces and Applications
title Homotopy Characterization of ANR Function Spaces
title_full Homotopy Characterization of ANR Function Spaces
title_fullStr Homotopy Characterization of ANR Function Spaces
title_full_unstemmed Homotopy Characterization of ANR Function Spaces
title_short Homotopy Characterization of ANR Function Spaces
title_sort homotopy characterization of anr function spaces
url http://dx.doi.org/10.1155/2013/925742
work_keys_str_mv AT jakasmrekar homotopycharacterizationofanrfunctionspaces