On an abstract evolution equation with a spectral operator of scalar type

It is shown that the weak solutions of the evolution equation y′(t)=Ay(t), t∈[0,T) (0<T≤∞), where A is a spectral operator of scalar type in a complex Banach space X, defined by Ball (1977), are given by the formula y(t)=e tAf, t∈[0,T), with the exponentials understood in the sense of the operati...

Full description

Saved in:
Bibliographic Details
Main Author: Marat V. Markin
Format: Article
Language:English
Published: Wiley 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171202112233
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is shown that the weak solutions of the evolution equation y′(t)=Ay(t), t∈[0,T) (0<T≤∞), where A is a spectral operator of scalar type in a complex Banach space X, defined by Ball (1977), are given by the formula y(t)=e tAf, t∈[0,T), with the exponentials understood in the sense of the operational calculus for such operators and the set of the initial values, f's, being ∩ 0≤t<TD(e tA), that is, the largest possible such a set in X.
ISSN:0161-1712
1687-0425