A select inhibitor of MORC2 encapsulated by chimeric membranecoated DNA nanocage target alleviation TNBC progression

Triple-negative breast cancer (TNBC) is the most malignant type of breast cancer and lacks effective targeted therapeutic drugs, resulting in a high recurrence rate and worse outcome. In this study, bioinformatic analysis and a series of experiments demonstrated that MOCR2 was highly expressed in TN...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaohan Su, Yunbo Luo, Yali Wang, Peng Qu, Jun Liu, Shiqi Han, Cui Ma, Shishan Deng, Qi Liang, Xiaowei Qi, Panke Cheng, Lingmi Hou
Format: Article
Language:English
Published: Elsevier 2025-04-01
Series:Materials Today Bio
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590006425000559
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Triple-negative breast cancer (TNBC) is the most malignant type of breast cancer and lacks effective targeted therapeutic drugs, resulting in a high recurrence rate and worse outcome. In this study, bioinformatic analysis and a series of experiments demonstrated that MOCR2 was highly expressed in TNBC and closely associated with poor prognosis, indicating that MOCR2 may be a potential therapeutic target for TNBC. Subsequently, Angoline was identified as an inhibitor of MORC2 protein by high-throughput screening and can significantly kill the TNBC cells by blocking cell cycle and inducing apoptosis. Furthermore, the biomimetic nanodrug delivery system (PMD) was designed by encapsulating tetrahedral DNA nanostructures with biomimetic cell membrane, and it can efficiently evade the phagocytosis of immune system and target TNBC tissue. Additionally, PMD can markedly enhance the killing effect of Angoline on TNBC tumors. Therefore, PMD-enveloped Angoline provide a highly effective targeted therapeutic regimen for TNBC and may improve the outcome for patients with TNBC.
ISSN:2590-0064