Mixed Finite Element Computation of Energy Release Rate in Anisotropic Materials Based on Virtual Crack Closure-Integral Method

The material with anisotropic properties are becoming widely essential due to the ease to manipulate their mechanical properties to obtain a particular quality, insure safety or a specific behavior. Those kinds of materials are considered anisotropic because their characteristics and behavior are de...

Full description

Saved in:
Bibliographic Details
Main Authors: Sami Derouiche, Salah Bouziane, HamoudiBouzerd Laboratory of Civil Engineering and Hydraulics, University of May 8, 1945, Guelma, Algeria.�
Format: Article
Language:English
Published: Gruppo Italiano Frattura 2021-07-01
Series:Fracture and Structural Integrity
Subjects:
Online Access:https://www.fracturae.com/index.php/fis/article/view/3096/3297
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The material with anisotropic properties are becoming widely essential due to the ease to manipulate their mechanical properties to obtain a particular quality, insure safety or a specific behavior. Those kinds of materials are considered anisotropic because their characteristics and behavior are dependent on every direction of the material�s orientation. In this work, the virtual crack closure-integral technique is implemented to a mixed finite element, in addition to the stiffness derivative procedure, to evaluate the ERR of crack extension in anisotropic materials. A simulation of a cracked edge rectangular plate with anisotropic characteristics is taken for example. The results obtained are in good agreement with the analytical results, making the proposed technique a good model for fracture investigation and allow it to study more complicated cases in future works.
ISSN:1971-8993