Ground State Solutions to a Critical Nonlocal Integrodifferential System

Consider the following nonlocal integrodifferential system: LKu+λ1u+μ1u2⁎-2u+Gu(x,u,v)=0  in  Ω,  LKv+λ2v+μ2v2⁎-2v+Gv(x,u,v)=0  in  Ω,  u=0,  v=0  in  RN∖Ω, where LK is a general nonlocal integrodifferential operator, λ1,λ2,μ1,μ2>0, 2⁎≔2N/N-2s is a fractional Sobolev critical exponent, 0<s<...

Full description

Saved in:
Bibliographic Details
Main Authors: Min Liu, Zhijing Wang, Zhenyu Guo
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2018/4312083
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832566591108153344
author Min Liu
Zhijing Wang
Zhenyu Guo
author_facet Min Liu
Zhijing Wang
Zhenyu Guo
author_sort Min Liu
collection DOAJ
description Consider the following nonlocal integrodifferential system: LKu+λ1u+μ1u2⁎-2u+Gu(x,u,v)=0  in  Ω,  LKv+λ2v+μ2v2⁎-2v+Gv(x,u,v)=0  in  Ω,  u=0,  v=0  in  RN∖Ω, where LK is a general nonlocal integrodifferential operator, λ1,λ2,μ1,μ2>0, 2⁎≔2N/N-2s is a fractional Sobolev critical exponent, 0<s<1, N>2s, G(x,u,v) is a lower order perturbation of the critical coupling term, and Ω is an open bounded domain in RN with Lipschitz boundary. Under proper conditions, we establish an existence result of the ground state solution to the nonlocal integrodifferential system.
format Article
id doaj-art-07e087a47f334aaeaa2ab5f4535be4c1
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-07e087a47f334aaeaa2ab5f4535be4c12025-02-03T01:03:41ZengWileyAdvances in Mathematical Physics1687-91201687-91392018-01-01201810.1155/2018/43120834312083Ground State Solutions to a Critical Nonlocal Integrodifferential SystemMin Liu0Zhijing Wang1Zhenyu Guo2School of Sciences, Liaoning Shihua University, Fushun 113001, ChinaSchool of Sciences, Liaoning Shihua University, Fushun 113001, ChinaSchool of Mathematics, Liaoning Normal University, Dalian 116029, ChinaConsider the following nonlocal integrodifferential system: LKu+λ1u+μ1u2⁎-2u+Gu(x,u,v)=0  in  Ω,  LKv+λ2v+μ2v2⁎-2v+Gv(x,u,v)=0  in  Ω,  u=0,  v=0  in  RN∖Ω, where LK is a general nonlocal integrodifferential operator, λ1,λ2,μ1,μ2>0, 2⁎≔2N/N-2s is a fractional Sobolev critical exponent, 0<s<1, N>2s, G(x,u,v) is a lower order perturbation of the critical coupling term, and Ω is an open bounded domain in RN with Lipschitz boundary. Under proper conditions, we establish an existence result of the ground state solution to the nonlocal integrodifferential system.http://dx.doi.org/10.1155/2018/4312083
spellingShingle Min Liu
Zhijing Wang
Zhenyu Guo
Ground State Solutions to a Critical Nonlocal Integrodifferential System
Advances in Mathematical Physics
title Ground State Solutions to a Critical Nonlocal Integrodifferential System
title_full Ground State Solutions to a Critical Nonlocal Integrodifferential System
title_fullStr Ground State Solutions to a Critical Nonlocal Integrodifferential System
title_full_unstemmed Ground State Solutions to a Critical Nonlocal Integrodifferential System
title_short Ground State Solutions to a Critical Nonlocal Integrodifferential System
title_sort ground state solutions to a critical nonlocal integrodifferential system
url http://dx.doi.org/10.1155/2018/4312083
work_keys_str_mv AT minliu groundstatesolutionstoacriticalnonlocalintegrodifferentialsystem
AT zhijingwang groundstatesolutionstoacriticalnonlocalintegrodifferentialsystem
AT zhenyuguo groundstatesolutionstoacriticalnonlocalintegrodifferentialsystem