SPDEF ameliorates UUO-induced renal fibrosis by transcriptional activation of NR4A1

Abstract Nuclear receptor 4A1 (NR4A1) is a gene that increases the likelihood of chronic kidney disease (CKD) and contributes to its development. Previous research has shown that the SAM pointed domain containing Ets transformation-specific transcription factor (SPDEF) can activate NR4A1, but its me...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongshuang Wang, Ziheng Wei, Chang Xu, Fang Fang, Zheng Wang, Yan Zhong, Xiangting Wang
Format: Article
Language:English
Published: BMC 2024-12-01
Series:Molecular Medicine
Subjects:
Online Access:https://doi.org/10.1186/s10020-024-01030-3
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Nuclear receptor 4A1 (NR4A1) is a gene that increases the likelihood of chronic kidney disease (CKD) and contributes to its development. Previous research has shown that the SAM pointed domain containing Ets transformation-specific transcription factor (SPDEF) can activate NR4A1, but its mechanism of action in renal fibrosis is not yet clear. In this study, we used adenovirus to create a mouse kidney model with a specific knockdown of NR4A1 gene. Our results showed that the knockdown of NR4A1 can accelerate unilateral ureteral obstruction (UUO)-induced renal fibrosis in mice, and overexpression of NR4A1 can significantly reduce transforming growth factor-β1-induced (TGF-β1) fibrosis in HK-2 cells. Additionally, we found that overexpression of SPDEF can improve UUO-induced renal fibrosis in mice and TGF-β1-induced fibrosis in HK-2 by transcriptionally activating NR4A1. These findings suggest that SPDEF can activate NR4A1 transcriptionally and improve renal fibrosis.
ISSN:1528-3658