Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings

Let K be a nonempty closed convex subset of a real Banach space E, let S:K→K be nonexpansive, and let  T:K→K be Lipschitz strongly pseudocontractive mappings such that p∈FS∩FT=x∈K:Sx=Tx=x and x-Sy≤Sx-Sy and x-Ty≤Tx-Ty for all x, y∈K. Let βn be a sequence in 0, 1 satisfying (i) ∑n=1∞βn=∞; (ii) limn→∞...

Full description

Saved in:
Bibliographic Details
Main Authors: Shin Min Kang, Arif Rafiq, Faisal Ali, Young Chel Kwun
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/735673
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548377572671488
author Shin Min Kang
Arif Rafiq
Faisal Ali
Young Chel Kwun
author_facet Shin Min Kang
Arif Rafiq
Faisal Ali
Young Chel Kwun
author_sort Shin Min Kang
collection DOAJ
description Let K be a nonempty closed convex subset of a real Banach space E, let S:K→K be nonexpansive, and let  T:K→K be Lipschitz strongly pseudocontractive mappings such that p∈FS∩FT=x∈K:Sx=Tx=x and x-Sy≤Sx-Sy and x-Ty≤Tx-Ty for all x, y∈K. Let βn be a sequence in 0, 1 satisfying (i) ∑n=1∞βn=∞; (ii) limn→∞⁡βn=0. For arbitrary x0∈K, let xn be a sequence iteratively defined by xn=Syn, yn=1-βnxn-1+βnTxn, n≥1. Then the sequence xn converges strongly to a common fixed point p of S and T.
format Article
id doaj-art-07860b723c124b86a83078024500f411
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-07860b723c124b86a83078024500f4112025-02-03T06:14:11ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/735673735673Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive MappingsShin Min Kang0Arif Rafiq1Faisal Ali2Young Chel Kwun3Department of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Republic of KoreaDepartment of Mathematics, Lahore Leads University, Lahore 54810, PakistanCentre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan 60800, PakistanDepartment of Mathematics, Dong-A University, Busan 604-714, Republic of KoreaLet K be a nonempty closed convex subset of a real Banach space E, let S:K→K be nonexpansive, and let  T:K→K be Lipschitz strongly pseudocontractive mappings such that p∈FS∩FT=x∈K:Sx=Tx=x and x-Sy≤Sx-Sy and x-Ty≤Tx-Ty for all x, y∈K. Let βn be a sequence in 0, 1 satisfying (i) ∑n=1∞βn=∞; (ii) limn→∞⁡βn=0. For arbitrary x0∈K, let xn be a sequence iteratively defined by xn=Syn, yn=1-βnxn-1+βnTxn, n≥1. Then the sequence xn converges strongly to a common fixed point p of S and T.http://dx.doi.org/10.1155/2014/735673
spellingShingle Shin Min Kang
Arif Rafiq
Faisal Ali
Young Chel Kwun
Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings
Abstract and Applied Analysis
title Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings
title_full Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings
title_fullStr Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings
title_full_unstemmed Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings
title_short Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings
title_sort strong convergence for hybrid implicit s iteration scheme of nonexpansive and strongly pseudocontractive mappings
url http://dx.doi.org/10.1155/2014/735673
work_keys_str_mv AT shinminkang strongconvergenceforhybridimplicitsiterationschemeofnonexpansiveandstronglypseudocontractivemappings
AT arifrafiq strongconvergenceforhybridimplicitsiterationschemeofnonexpansiveandstronglypseudocontractivemappings
AT faisalali strongconvergenceforhybridimplicitsiterationschemeofnonexpansiveandstronglypseudocontractivemappings
AT youngchelkwun strongconvergenceforhybridimplicitsiterationschemeofnonexpansiveandstronglypseudocontractivemappings