Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings
Let K be a nonempty closed convex subset of a real Banach space E, let S:K→K be nonexpansive, and let T:K→K be Lipschitz strongly pseudocontractive mappings such that p∈FS∩FT=x∈K:Sx=Tx=x and x-Sy≤Sx-Sy and x-Ty≤Tx-Ty for all x, y∈K. Let βn be a sequence in 0, 1 satisfying (i) ∑n=1∞βn=∞; (ii) limn→∞...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/735673 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832548377572671488 |
---|---|
author | Shin Min Kang Arif Rafiq Faisal Ali Young Chel Kwun |
author_facet | Shin Min Kang Arif Rafiq Faisal Ali Young Chel Kwun |
author_sort | Shin Min Kang |
collection | DOAJ |
description | Let K be a nonempty closed convex subset of a real Banach space E, let S:K→K be nonexpansive, and let T:K→K be Lipschitz strongly pseudocontractive mappings such that p∈FS∩FT=x∈K:Sx=Tx=x and x-Sy≤Sx-Sy and x-Ty≤Tx-Ty for all x, y∈K. Let βn be a sequence in 0, 1 satisfying (i) ∑n=1∞βn=∞; (ii) limn→∞βn=0. For arbitrary x0∈K, let xn be a sequence iteratively defined by xn=Syn, yn=1-βnxn-1+βnTxn, n≥1. Then the sequence xn converges strongly to a common fixed point p of S and T. |
format | Article |
id | doaj-art-07860b723c124b86a83078024500f411 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-07860b723c124b86a83078024500f4112025-02-03T06:14:11ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/735673735673Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive MappingsShin Min Kang0Arif Rafiq1Faisal Ali2Young Chel Kwun3Department of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Republic of KoreaDepartment of Mathematics, Lahore Leads University, Lahore 54810, PakistanCentre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan 60800, PakistanDepartment of Mathematics, Dong-A University, Busan 604-714, Republic of KoreaLet K be a nonempty closed convex subset of a real Banach space E, let S:K→K be nonexpansive, and let T:K→K be Lipschitz strongly pseudocontractive mappings such that p∈FS∩FT=x∈K:Sx=Tx=x and x-Sy≤Sx-Sy and x-Ty≤Tx-Ty for all x, y∈K. Let βn be a sequence in 0, 1 satisfying (i) ∑n=1∞βn=∞; (ii) limn→∞βn=0. For arbitrary x0∈K, let xn be a sequence iteratively defined by xn=Syn, yn=1-βnxn-1+βnTxn, n≥1. Then the sequence xn converges strongly to a common fixed point p of S and T.http://dx.doi.org/10.1155/2014/735673 |
spellingShingle | Shin Min Kang Arif Rafiq Faisal Ali Young Chel Kwun Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings Abstract and Applied Analysis |
title | Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings |
title_full | Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings |
title_fullStr | Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings |
title_full_unstemmed | Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings |
title_short | Strong Convergence for Hybrid Implicit S-Iteration Scheme of Nonexpansive and Strongly Pseudocontractive Mappings |
title_sort | strong convergence for hybrid implicit s iteration scheme of nonexpansive and strongly pseudocontractive mappings |
url | http://dx.doi.org/10.1155/2014/735673 |
work_keys_str_mv | AT shinminkang strongconvergenceforhybridimplicitsiterationschemeofnonexpansiveandstronglypseudocontractivemappings AT arifrafiq strongconvergenceforhybridimplicitsiterationschemeofnonexpansiveandstronglypseudocontractivemappings AT faisalali strongconvergenceforhybridimplicitsiterationschemeofnonexpansiveandstronglypseudocontractivemappings AT youngchelkwun strongconvergenceforhybridimplicitsiterationschemeofnonexpansiveandstronglypseudocontractivemappings |