The Diophantine Equation 8x+py=z2
Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p≡±3(mod 8), then the equation 8x+py=z2 has no positive integer solutions (x,y,z); (ii) if p≡7(mod 8), then the equation has only the solutions (p,x,y,z)=(2q-1,(1/3)(q+2),2,2q+1), where q i...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-01-01
|
Series: | The Scientific World Journal |
Online Access: | http://dx.doi.org/10.1155/2015/306590 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832546036602634240 |
---|---|
author | Lan Qi Xiaoxue Li |
author_facet | Lan Qi Xiaoxue Li |
author_sort | Lan Qi |
collection | DOAJ |
description | Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p≡±3(mod 8), then the equation 8x+py=z2 has no positive integer solutions (x,y,z); (ii) if p≡7(mod 8), then the equation has only the solutions (p,x,y,z)=(2q-1,(1/3)(q+2),2,2q+1), where q is an odd prime with q≡1(mod 3); (iii) if p≡1(mod 8) and p≠17, then the equation has at most two positive integer solutions (x,y,z). |
format | Article |
id | doaj-art-070b4ef5934a428fb0f26490231a21d9 |
institution | Kabale University |
issn | 2356-6140 1537-744X |
language | English |
publishDate | 2015-01-01 |
publisher | Wiley |
record_format | Article |
series | The Scientific World Journal |
spelling | doaj-art-070b4ef5934a428fb0f26490231a21d92025-02-03T07:23:55ZengWileyThe Scientific World Journal2356-61401537-744X2015-01-01201510.1155/2015/306590306590The Diophantine Equation 8x+py=z2Lan Qi0Xiaoxue Li1College of Mathematics and Statistics, Yulin University, Yulin, Shaanxi 719000, ChinaSchool of Mathematics, Northwest University, Xi’an, Shaanxi 710127, ChinaLet p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p≡±3(mod 8), then the equation 8x+py=z2 has no positive integer solutions (x,y,z); (ii) if p≡7(mod 8), then the equation has only the solutions (p,x,y,z)=(2q-1,(1/3)(q+2),2,2q+1), where q is an odd prime with q≡1(mod 3); (iii) if p≡1(mod 8) and p≠17, then the equation has at most two positive integer solutions (x,y,z).http://dx.doi.org/10.1155/2015/306590 |
spellingShingle | Lan Qi Xiaoxue Li The Diophantine Equation 8x+py=z2 The Scientific World Journal |
title | The Diophantine Equation 8x+py=z2 |
title_full | The Diophantine Equation 8x+py=z2 |
title_fullStr | The Diophantine Equation 8x+py=z2 |
title_full_unstemmed | The Diophantine Equation 8x+py=z2 |
title_short | The Diophantine Equation 8x+py=z2 |
title_sort | diophantine equation 8x py z2 |
url | http://dx.doi.org/10.1155/2015/306590 |
work_keys_str_mv | AT lanqi thediophantineequation8xpyz2 AT xiaoxueli thediophantineequation8xpyz2 AT lanqi diophantineequation8xpyz2 AT xiaoxueli diophantineequation8xpyz2 |