A New Feigenbaum-Like Chaotic 3D System
Based on Sprott N system, a new three-dimensional autonomous system is reported. It is demonstrated to be chaotic in the sense of having positive largest Lyapunov exponent and fractional dimension. To further understand the complex dynamics of the system, some basic properties such as Lyapunov expon...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2014/328143 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on Sprott N system, a new three-dimensional autonomous system is reported. It is demonstrated to be chaotic in the sense of having positive largest Lyapunov exponent and fractional dimension. To further understand the complex dynamics of the system, some basic properties such as Lyapunov exponents, bifurcation diagram, Poincaré mapping, and period-doubling route to chaos are analyzed with careful numerical simulations. The obtained results also show that the period-doubling sequence of bifurcations leads to a Feigenbaum-like strange attractor. |
---|---|
ISSN: | 1026-0226 1607-887X |