Efficient GPU Implementation of the McMurchie–Davidson Method for Shell-Based ERI Computations
Quantum chemistry offers the formal machinery to derive molecular and physical properties arising from (sub)atomic interactions. However, as molecules of practical interest are largely polyatomic, contemporary approximation schemes such as the Hartree–Fock scheme are computationally expensive due to...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/5/2572 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Quantum chemistry offers the formal machinery to derive molecular and physical properties arising from (sub)atomic interactions. However, as molecules of practical interest are largely polyatomic, contemporary approximation schemes such as the Hartree–Fock scheme are computationally expensive due to the large number of electron repulsion integrals (ERIs). Central to the Hartree–Fock method is the efficient computation of ERIs over Gaussian functions (GTO-ERIs). Here, the well-known McMurchie–Davidson method (MD) offers an elegant formalism by incrementally extending Hermite Gaussian functions and auxiliary tabulated functions. Although the MD method offers a high degree of versatility to acceleration schemes through Graphics Processing Units (GPUs), the current GPU implementations limit the practical use of supported values of the azimuthal quantum number. In this paper, we propose a generalized framework capable of computing GTO-ERIs for arbitrary azimuthal quantum numbers, provided that the intermediate terms of the MD method can be stored. Our approach benefits from extending the MD recurrence relations through shells, batches, and triple-buffering of the shared memory, and ordering similar ERIs, thus enabling the effective parallelization and use of GPU resources. Furthermore, our approach proposes four GPU implementation schemes considering the suitable mappings between Gaussian basis and CUDA blocks and threads. Our computational experiments involving the GTO-ERI computations of molecules of interest on an NVIDIA A100 Tensor Core GPU (NVIDIA, Santa Clara, CA, USA) have revealed the merits of the proposed acceleration schemes in terms of computation time, including up to a 72× improvement over our previous GPU implementation and up to a 4500× speedup compared to a naive CPU implementation, highlighting the effectiveness of our method in accelerating ERI computations for both monatomic and polyatomic molecules. Our work has the potential to explore new parallelization schemes of distinct and complex computation paths involved in ERI computation. |
|---|---|
| ISSN: | 2076-3417 |