Experimental and Theoretical Evaluation of Incident Solar Irradiance on Photovoltaic Power Plants Under Real Operating Conditions: Fixed Tilt Angle System vs. Horizontal Single-Axis Tracker

The aim of this paper was to delve deeper into the nuances of incident solar irradiance on the photovoltaic field of a fixed tilt angle system versus a horizontal single-axis tracker. The fixed tilt angle system was used as a baseline for comparison. Three assessment indicators were analysed (annual...

Full description

Saved in:
Bibliographic Details
Main Authors: Arsenio Barbón, Jaime Martínez-Suárez, Luis Bayón, José A. Fernández-Rubiera
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/8/4571
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this paper was to delve deeper into the nuances of incident solar irradiance on the photovoltaic field of a fixed tilt angle system versus a horizontal single-axis tracker. The fixed tilt angle system was used as a baseline for comparison. Three assessment indicators were analysed (annual energy gain (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>E</mi><mi>G</mi></mrow></semantics></math></inline-formula>), monthly energy gain (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>E</mi><mi>G</mi></mrow></semantics></math></inline-formula>), daily energy gain (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>E</mi><mi>G</mi></mrow></semantics></math></inline-formula>)). The procedure used comprised the following steps: (i) choice of solar irradiance estimation model; (ii) theoretical study; (iii) study under real operating conditions—for this purpose, an experimental setup was used; and (iv) comparison of these studies. The experimental setup was installed at the Department of Electrical Engineering of the University of Oviedo (Gijón, Spain) (latitude <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>43</mn><mo>°</mo><msup><mn>31</mn><mo>′</mo></msup><msup><mn>22</mn><mrow><mo>″</mo></mrow></msup></mrow></semantics></math></inline-formula> N, longitude <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>05</mn><mo>°</mo><msup><mn>43</mn><mo>′</mo></msup><msup><mn>07</mn><mrow><mo>″</mo></mrow></msup></mrow></semantics></math></inline-formula> W, elevation 28 (m) above sea level). Gijón is characterised by a temperate oceanic climate typical of Spain’s Atlantic coast, with cool summers and wet and mostly mild winters. The code assigned to Gijón under the Köppen climate classification is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>f</mi><mi>b</mi></mrow></msub></semantics></math></inline-formula>. The horizontal single-axis trackers that comprise photovoltaic power plants have three operating modes (Scenario 1). Some studies consider a unique mode of operation from sunrise to sunset (Scenario 2). The following conclusions can be drawn from the results obtained: (i) although the results obtained in the theoretical study and in the study under real operating conditions were different, a trend can be seen in the results; for example, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>E</mi><mi>G</mi></mrow></semantics></math></inline-formula> obtained was approximately <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>13</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8.5</mn><mo>%</mo></mrow></semantics></math></inline-formula> in the theoretical study and in the real study, respectively, in Scenario 1 and approximately <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>18</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10.5</mn><mo>%</mo></mrow></semantics></math></inline-formula>, respectively, in Scenario 2; Scenario 2 obtained higher results than Scenario 1 in all the assessment indicators; but it must be considered that Scenario 1 is the real mode of operation; (ii) from March to September, the horizontal single-axis tracker generates more electrical energy; as this period contains the months of greatest solar irradiance, the horizontal single-axis tracker performs better annually; considering the theoretical study and Scenario 1, the highest value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>E</mi><mi>G</mi></mrow></semantics></math></inline-formula> was in June (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>43</mn><mo>%</mo></mrow></semantics></math></inline-formula>) and the lowest was in December (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>29</mn><mo>%</mo></mrow></semantics></math></inline-formula>); when the study was considered under real operating conditions, the highest result was in July (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>30</mn><mo>%</mo></mrow></semantics></math></inline-formula>) and the lowest was in December (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>24</mn><mo>%</mo></mrow></semantics></math></inline-formula>); (iii) on the days between 70 and 277 in Scenario 1, the horizontal single-axis tracker generated more electrical energy; on the other days the opposite occurred; taking into account the theoretical study, the highest and lowest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>E</mi><mi>G</mi></mrow></semantics></math></inline-formula> values were <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>43</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>30</mn><mo>%</mo></mrow></semantics></math></inline-formula>, respectively; when the study was considered under real operating conditions, the highest and lowest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>E</mi><mi>G</mi></mrow></semantics></math></inline-formula> values were <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>58</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>47</mn><mo>%</mo></mrow></semantics></math></inline-formula>, respectively.
ISSN:2076-3417