Interior Peak Solutions for a Semilinear Dirichlet Problem

In this paper, we consider the semilinear Dirichlet problem <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><msub><mi mathvariant="script">P</mi&g...

Full description

Saved in:
Bibliographic Details
Main Authors: Hissah Alharbi, Hibah Alkhuzayyim, Mohamed Ben Ayed, Khalil El Mehdi
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/58
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589093235589120
author Hissah Alharbi
Hibah Alkhuzayyim
Mohamed Ben Ayed
Khalil El Mehdi
author_facet Hissah Alharbi
Hibah Alkhuzayyim
Mohamed Ben Ayed
Khalil El Mehdi
author_sort Hissah Alharbi
collection DOAJ
description In this paper, we consider the semilinear Dirichlet problem <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><msub><mi mathvariant="script">P</mi><mi>ε</mi></msub><mo>)</mo></mrow><mo>:</mo><mo>−</mo><mo>Δ</mo><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>=</mo><msup><mi>u</mi><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mstyle><mo>−</mo><mi>ε</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> on ∂<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo></mrow></semantics></math></inline-formula> is a bounded regular domain in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula> is a small positive parameter, and <i>V</i> is a non-constant positive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula>-function on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mo>Ω</mo><mo>¯</mo></mover></semantics></math></inline-formula>. We construct interior peak solutions with isolated bubbles. This leads to a multiplicity result for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi mathvariant="script">P</mi><mi>ε</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>. The proof of our results relies on precise expansions of the gradient of the Euler–Lagrange functional associated with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi mathvariant="script">P</mi><mi>ε</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>, along with a suitable projection of the bubbles. This projection and its associated estimates are new and play a crucial role in tackling such types of problems.
format Article
id doaj-art-064f80fa4b974b1e9213cf68aeafe868
institution Kabale University
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-064f80fa4b974b1e9213cf68aeafe8682025-01-24T13:22:17ZengMDPI AGAxioms2075-16802025-01-011415810.3390/axioms14010058Interior Peak Solutions for a Semilinear Dirichlet ProblemHissah Alharbi0Hibah Alkhuzayyim1Mohamed Ben Ayed2Khalil El Mehdi3Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi ArabiaDepartment of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi ArabiaDepartment of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi ArabiaDepartment of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi ArabiaIn this paper, we consider the semilinear Dirichlet problem <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><msub><mi mathvariant="script">P</mi><mi>ε</mi></msub><mo>)</mo></mrow><mo>:</mo><mo>−</mo><mo>Δ</mo><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>=</mo><msup><mi>u</mi><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mstyle><mo>−</mo><mi>ε</mi></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> on ∂<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo></mrow></semantics></math></inline-formula> is a bounded regular domain in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula> is a small positive parameter, and <i>V</i> is a non-constant positive <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula>-function on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mo>Ω</mo><mo>¯</mo></mover></semantics></math></inline-formula>. We construct interior peak solutions with isolated bubbles. This leads to a multiplicity result for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi mathvariant="script">P</mi><mi>ε</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>. The proof of our results relies on precise expansions of the gradient of the Euler–Lagrange functional associated with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi mathvariant="script">P</mi><mi>ε</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>, along with a suitable projection of the bubbles. This projection and its associated estimates are new and play a crucial role in tackling such types of problems.https://www.mdpi.com/2075-1680/14/1/58partial differential equationsvariational analysisnonlinear analysiscritical Sobolev exponent
spellingShingle Hissah Alharbi
Hibah Alkhuzayyim
Mohamed Ben Ayed
Khalil El Mehdi
Interior Peak Solutions for a Semilinear Dirichlet Problem
Axioms
partial differential equations
variational analysis
nonlinear analysis
critical Sobolev exponent
title Interior Peak Solutions for a Semilinear Dirichlet Problem
title_full Interior Peak Solutions for a Semilinear Dirichlet Problem
title_fullStr Interior Peak Solutions for a Semilinear Dirichlet Problem
title_full_unstemmed Interior Peak Solutions for a Semilinear Dirichlet Problem
title_short Interior Peak Solutions for a Semilinear Dirichlet Problem
title_sort interior peak solutions for a semilinear dirichlet problem
topic partial differential equations
variational analysis
nonlinear analysis
critical Sobolev exponent
url https://www.mdpi.com/2075-1680/14/1/58
work_keys_str_mv AT hissahalharbi interiorpeaksolutionsforasemilineardirichletproblem
AT hibahalkhuzayyim interiorpeaksolutionsforasemilineardirichletproblem
AT mohamedbenayed interiorpeaksolutionsforasemilineardirichletproblem
AT khalilelmehdi interiorpeaksolutionsforasemilineardirichletproblem