Emerging trends in human upper extremity rehabilitation robot

Stroke is a leading cause of neurological disorders that result in physical disability, particularly among the elderly. Neurorehabilitation plays a crucial role in helping stroke patients recover from physical impairments and regain mobility. Physical therapy is one of the most effective forms of ne...

Full description

Saved in:
Bibliographic Details
Main Authors: Sk. Khairul Hasan, Subodh B. Bhujel, Gabrielle Sara Niemiec
Format: Article
Language:English
Published: KeAi Communications Co. Ltd. 2024-01-01
Series:Cognitive Robotics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667241324000120
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stroke is a leading cause of neurological disorders that result in physical disability, particularly among the elderly. Neurorehabilitation plays a crucial role in helping stroke patients recover from physical impairments and regain mobility. Physical therapy is one of the most effective forms of neurorehabilitation, but the growing number of patients requires a large workforce of trained therapists, which is currently insufficient. Robotic rehabilitation offers a promising alternative, capable of supplementing or even replacing human-assisted physical therapy through the use of rehabilitation robots. To design effective robotic devices for rehabilitation, a solid foundation of knowledge is essential. This article provides a comprehensive overview of the key elements needed to develop human upper extremity rehabilitation robots. It covers critical aspects such as upper extremity anatomy, joint range of motion, anthropometric parameters, disability assessment techniques, and robot-assisted training methods. Additionally, it reviews recent advancements in rehabilitation robots, including exoskeletons, end-effector-based robots, and planar robots. The article also evaluates existing upper extremity rehabilitation robots based on their mechanical design and functionality, identifies their limitations, and suggests future research directions for further improvement.
ISSN:2667-2413