Radial and Latitudinal Distributions of the Exohiss Under the Effect of Landau Damping

Abstract Exohiss serves as a typical imprint of the outward energy release from plasmaspheric hiss. The distribution of exohiss under the effect of Landau damping has not been thoroughly evaluate. On the basis of observations from the Van Allen Probes on 17 February 2014, we performed two‐dimensiona...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiangling Ding, Zhaoguo He, Zhiyong Wu, Jiang Yu, Kun Li, Yuguang Ye, Qiugang Zong
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2024GL112567
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Exohiss serves as a typical imprint of the outward energy release from plasmaspheric hiss. The distribution of exohiss under the effect of Landau damping has not been thoroughly evaluate. On the basis of observations from the Van Allen Probes on 17 February 2014, we performed two‐dimensional ray tracing simulations to model the evolution of hiss waves propagating from the geomagnetic equator in plasmasphere. The results show that the hiss wave power decreases rapidly as the waves enter the plasmatrough under the enhanced Landau damping effect of hot electrons. Furthermore, we perform a statistical analysis of the simulation results from multiple rays and obtain the radial, latitudinal, and frequency distributions of the exohiss wave power. The modeled distribution characteristics of exohiss align well with observations, suggesting that Landau damping is crucial in shaping the morphology of exohiss in the inner magnetosphere.
ISSN:0094-8276
1944-8007