Positive Solutions Depending on Parameters for a Nonlinear Fractional System with p-Laplacian Operators

This paper considers a system of fractional differential equations involving p-Laplacian operators and two parameters D0+α1φp1D0+β1ut+λft,ut,vt=0,0<t<1,D0+α2φp2D0+β2vt+μgt,ut,vt=0,0<t<1,u0=u1=u′0=u′1=0,D0+β1u0=0,D0+β1u1=b1D0+β1uη1,v0=v1=v′0=v′1=0,D0+β2v0=0,D0+β2v1=b2D0+β2vη2, where αi∈1,...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen Yang, Xiaolin Zhu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2020/9563791
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832566316164186112
author Chen Yang
Xiaolin Zhu
author_facet Chen Yang
Xiaolin Zhu
author_sort Chen Yang
collection DOAJ
description This paper considers a system of fractional differential equations involving p-Laplacian operators and two parameters D0+α1φp1D0+β1ut+λft,ut,vt=0,0<t<1,D0+α2φp2D0+β2vt+μgt,ut,vt=0,0<t<1,u0=u1=u′0=u′1=0,D0+β1u0=0,D0+β1u1=b1D0+β1uη1,v0=v1=v′0=v′1=0,D0+β2v0=0,D0+β2v1=b2D0+β2vη2, where αi∈1,2, βi∈3,4, D0+αi and D0+βi are the standard Riemann-Liouville derivatives, φpis=spi−2s,pi>1, φpi−1=φqi, 1/pi+1/qi=1,ηi∈0,1,bi∈0,ηi1−αi/pi−1, i=1,2, and f,g∈C0,1×0,+∞×0,+∞,0,+∞ and λ and μ are two positive parameters. We obtain the existence and uniqueness of positive solutions depending on parameters for the system by utilizing a recent fixed point theorem. Furthermore, an example is present to illustrate our main result.
format Article
id doaj-art-06249d4ba75d46459063183a74b4b2e7
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-06249d4ba75d46459063183a74b4b2e72025-02-03T01:04:29ZengWileyAdvances in Mathematical Physics1687-91201687-91392020-01-01202010.1155/2020/95637919563791Positive Solutions Depending on Parameters for a Nonlinear Fractional System with p-Laplacian OperatorsChen Yang0Xiaolin Zhu1Basic Course Department, Business College of Shanxi University, Taiyuan, Shanxi 030031, ChinaSchool of Mathematical Sciences, Shanxi University, Taiyuan, 030006 Shanxi, ChinaThis paper considers a system of fractional differential equations involving p-Laplacian operators and two parameters D0+α1φp1D0+β1ut+λft,ut,vt=0,0<t<1,D0+α2φp2D0+β2vt+μgt,ut,vt=0,0<t<1,u0=u1=u′0=u′1=0,D0+β1u0=0,D0+β1u1=b1D0+β1uη1,v0=v1=v′0=v′1=0,D0+β2v0=0,D0+β2v1=b2D0+β2vη2, where αi∈1,2, βi∈3,4, D0+αi and D0+βi are the standard Riemann-Liouville derivatives, φpis=spi−2s,pi>1, φpi−1=φqi, 1/pi+1/qi=1,ηi∈0,1,bi∈0,ηi1−αi/pi−1, i=1,2, and f,g∈C0,1×0,+∞×0,+∞,0,+∞ and λ and μ are two positive parameters. We obtain the existence and uniqueness of positive solutions depending on parameters for the system by utilizing a recent fixed point theorem. Furthermore, an example is present to illustrate our main result.http://dx.doi.org/10.1155/2020/9563791
spellingShingle Chen Yang
Xiaolin Zhu
Positive Solutions Depending on Parameters for a Nonlinear Fractional System with p-Laplacian Operators
Advances in Mathematical Physics
title Positive Solutions Depending on Parameters for a Nonlinear Fractional System with p-Laplacian Operators
title_full Positive Solutions Depending on Parameters for a Nonlinear Fractional System with p-Laplacian Operators
title_fullStr Positive Solutions Depending on Parameters for a Nonlinear Fractional System with p-Laplacian Operators
title_full_unstemmed Positive Solutions Depending on Parameters for a Nonlinear Fractional System with p-Laplacian Operators
title_short Positive Solutions Depending on Parameters for a Nonlinear Fractional System with p-Laplacian Operators
title_sort positive solutions depending on parameters for a nonlinear fractional system with p laplacian operators
url http://dx.doi.org/10.1155/2020/9563791
work_keys_str_mv AT chenyang positivesolutionsdependingonparametersforanonlinearfractionalsystemwithplaplacianoperators
AT xiaolinzhu positivesolutionsdependingonparametersforanonlinearfractionalsystemwithplaplacianoperators