Robotic mechanical wounding is sufficient to induce phenylacetaldoxime accumulation in Tococa quadrialata
This study investigated the accumulation of phenlyacetaldoxime (PAOx) and PAOx-Glc in Tococa quadrialata leaves in response to herbivore infestation and mechanical wounding. Results show that PAOx levels peaked at 24 h post-infestation, while PAOx-Glc remained present for several days. The accumulat...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2024-12-01
|
| Series: | Plant Signaling & Behavior |
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1080/15592324.2024.2360298 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study investigated the accumulation of phenlyacetaldoxime (PAOx) and PAOx-Glc in Tococa quadrialata leaves in response to herbivore infestation and mechanical wounding. Results show that PAOx levels peaked at 24 h post-infestation, while PAOx-Glc remained present for several days. The accumulation of PAOx began as early as 3 h after herbivory, with PAOx-Glc significantly increased after 6 h. Mechanical wounding induced similar responses in PAOx and PAOx-Glc accumulation as herbivory, suggesting that continuous tissue damage triggers the production of these compounds. Interestingly, SpitWorm-treated leaves showed the highest levels of both PAOx and PAOx-Glc, indicating that herbivore-derived oral secretions (OS) play a role in the induction of these compounds. Additionally, JA-independent PAOx production was found to be associated with tissue damage rather than specific known signaling compounds. Emission of benzyl cyanide and 2-phenylethanol, PAOx-derived plant volatiles, was observed in response to herbivory and SpitWorm treatment providing plant-derived OS, further highlighting the role of herbivore cues in plant defense responses. |
|---|---|
| ISSN: | 1559-2316 1559-2324 |