PCPE-YOLO with a lightweight dynamically reconfigurable backbone for small object detection
Abstract In the domain of object detection, small object detection remains a pressing challenge, as existing approaches often suffer from limited accuracy, high model complexity, and difficulty meeting lightweight deployment requirements. In this paper, we propose PCPE-YOLO, a novel object detection...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-08-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-15975-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract In the domain of object detection, small object detection remains a pressing challenge, as existing approaches often suffer from limited accuracy, high model complexity, and difficulty meeting lightweight deployment requirements. In this paper, we propose PCPE-YOLO, a novel object detection algorithm, specifically designed to address these difficulties. First, we put forward a dynamically reconfigurable C2f_PIG module. This module uses a parameter-aware mechanism to adapt its bottleneck structures to different network depths and widths, reducing parameters while maintaining performance. Next, we introduce a Context Anchor Attention mechanism that boosts the model’s focus on the contexts of small objects, thereby improving detection accuracy. In addition, we add a small object detection layer to enhance the model’s localization capability for small objects. Finally, we integrate an Efficient Up-Convolution Block to sharpen decoder feature maps, enhancing small object recall with minimal computational overhead. Experiments on VisDrone2019, KITTI, and NWPU VHR-10 datasets show that PCPE-YOLO significantly outperforms both the baseline and other state-of-the-art methods in precision, recall, mean average precision, and parameters, achieving the best precision among all compared approaches. On VisDrone2019 in particular, it achieves improvements of 3.8% in precision, 5.6% in recall, 6.2% in mAP50, and 5% in F1 score, effectively combining lightweight design with high small object detection performance and providing a more efficient and reliable solution for small object detection in real-world applications. |
|---|---|
| ISSN: | 2045-2322 |