The Impact of Feedback on the Different Time Courses of Multisensory Temporal Recalibration

The capacity to rapidly adjust perceptual representations confers a fundamental advantage when confronted with a constantly changing world. Unexplored is how feedback regarding sensory judgments (top-down factors) interacts with sensory statistics (bottom-up factors) to drive long- and short-term re...

Full description

Saved in:
Bibliographic Details
Main Authors: Matthew A. De Niear, Jean-Paul Noel, Mark T. Wallace
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Neural Plasticity
Online Access:http://dx.doi.org/10.1155/2017/3478742
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The capacity to rapidly adjust perceptual representations confers a fundamental advantage when confronted with a constantly changing world. Unexplored is how feedback regarding sensory judgments (top-down factors) interacts with sensory statistics (bottom-up factors) to drive long- and short-term recalibration of multisensory perceptual representations. Here, we examined the time course of both cumulative and rapid temporal perceptual recalibration for individuals completing an audiovisual simultaneity judgment task in which they were provided with varying degrees of feedback. We find that in the presence of feedback (as opposed to simple sensory exposure) temporal recalibration is more robust. Additionally, differential time courses are seen for cumulative and rapid recalibration dependent upon the nature of the feedback provided. Whereas cumulative recalibration effects relied more heavily on feedback that informs (i.e., negative feedback) rather than confirms (i.e., positive feedback) the judgment, rapid recalibration shows the opposite tendency. Furthermore, differential effects on rapid and cumulative recalibration were seen when the reliability of feedback was altered. Collectively, our findings illustrate that feedback signals promote and sustain audiovisual recalibration over the course of cumulative learning and enhance rapid trial-to-trial learning. Furthermore, given the differential effects seen for cumulative and rapid recalibration, these processes may function via distinct mechanisms.
ISSN:2090-5904
1687-5443