Improved Use of the Full Length of Milling-Tool Flutes in Processes of Air-Contour Milling

The cutting length of milling tools must be longer than the axial distance of the material to be processed. In fact, in most cases, the cutting length far exceeds the thickness of the material to be removed. Therefore, along the entire length of the milling-tool flutes, only the area farthest from t...

Full description

Saved in:
Bibliographic Details
Main Authors: César García-Hernández, Juan-Jesús Valdivia-Sánchez, Pedro Ubieto-Artur, Mariano García-Arbués, Anastasios Tzotzis, Juan-José Garde-Barace, Francisco Valdivia-Calvo, José-Luis Huertas-Talón
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Journal of Manufacturing and Materials Processing
Subjects:
Online Access:https://www.mdpi.com/2504-4494/9/5/150
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cutting length of milling tools must be longer than the axial distance of the material to be processed. In fact, in most cases, the cutting length far exceeds the thickness of the material to be removed. Therefore, along the entire length of the milling-tool flutes, only the area farthest from the shank wears out, leaving the rest of the tool practically without any wear, especially in the area closest to the shank. This research analyses a toolpath model to use the complete length of the milling tool flutes, in those machining operations in which it is possible, with the objective of reducing the costs associated with tool wearing and resharpening. This improves the tool performance, which clearly increases the sustainability of the milling process. For this purpose, it is necessary to transform the numerical control programme that performs a flat (2D) toolpath into a helical (3D) one by decomposing the arcs and rectilinear segments into a succession of points within a precision range. A negative aspect of this method is that it can only be applied to bottomless contours in processes of air-contour milling.
ISSN:2504-4494