Accelerated diffusion tensor imaging with self-supervision and fine-tuning
Abstract Diffusion tensor imaging (DTI) is essential for assessing brain microstructure but requires long acquisition times, limiting clinical use. Recent deep learning (DL) approaches, such as SuperDTI or deepDTI, improve DTI metrics but demand large, high-quality datasets for training. We propose...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-96459-9 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Diffusion tensor imaging (DTI) is essential for assessing brain microstructure but requires long acquisition times, limiting clinical use. Recent deep learning (DL) approaches, such as SuperDTI or deepDTI, improve DTI metrics but demand large, high-quality datasets for training. We propose a self-supervised deep learning with fine-tuning (SSDLFT) framework to reduce training data requirements. SSDLFT involves self-supervised pretraining, which denoises data without clean labels, followed by fine-tuning with limited high-quality data. Experiments using Human Connectome Project data show that SSDLFT outperforms traditional methods and other DL approaches in qualitative and quantitative assessments of DWI reconstructions and tensor metrics. SSDLFT’s ability to maintain high performance with fewer training subjects and DWIs presents a significant advancement, enhancing DTI’s practical applications in clinical and research settings. |
|---|---|
| ISSN: | 2045-2322 |