Stability Analysis of Fractional-Order Bidirectional Associative Memory Neural Networks with Mixed Time-Varying Delays
This paper studies the stability analysis of fractional-order bidirectional associative memory neural networks with mixed time-varying delays. The orders of these systems lie in the interval 1,2. Firstly, a sufficient condition is derived to ensure the finite-time stability of systems by resorting t...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2019/2363707 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies the stability analysis of fractional-order bidirectional associative memory neural networks with mixed time-varying delays. The orders of these systems lie in the interval 1,2. Firstly, a sufficient condition is derived to ensure the finite-time stability of systems by resorting to some analytical techniques and some elementary inequalities. Next, a sufficient condition is obtained to guarantee the global asymptotic stability of systems based on the Laplace transform, the mean value theorem, the generalized Gronwall inequality, and some properties of Mittag–Leffler functions. In particular, these obtained conditions are expressed as some algebraic inequalities which can be easily calculated in practical applications. Finally, some numerical examples are given to verify the feasibility and effectiveness of the obtained main results. |
---|---|
ISSN: | 1076-2787 1099-0526 |