Ultra-sensitive fluorescence-activated droplet single-cell sorting based on Tetramer-HCR-EvaGreen amplification

Abstract The current single-cell analysis technologies such as fluorescence-activated cell sorting (FACS) and fluorescence-activated droplet sorting (FADS) could decipher the cellular heterogeneity but were constrained by low sorting performance and cell viability. Here, an ultra-sensitive single-ce...

Full description

Saved in:
Bibliographic Details
Main Authors: Long Chen, Yi Xu, Lele Zhou, Ding Ma, Rong Zhang, Yifan Liu, Xianqiang Mi
Format: Article
Language:English
Published: Nature Publishing Group 2025-01-01
Series:Microsystems & Nanoengineering
Online Access:https://doi.org/10.1038/s41378-024-00861-8
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The current single-cell analysis technologies such as fluorescence-activated cell sorting (FACS) and fluorescence-activated droplet sorting (FADS) could decipher the cellular heterogeneity but were constrained by low sorting performance and cell viability. Here, an ultra-sensitive single-cell sorting platform has been developed by integrating the FADS technology with Tetramer-HCR-EvaGreen (THE) fluorescence signal amplification. The THE system produced much higher fluorescence signal than that of the single Tetramer or Tetramer-HCR signal amplification. Upon application to target MCF-7 cells, the platform exhibited high efficacy and selectivity while maintaining more than 95% cell viability. The THE-FADS achieved sorting efficiencies of 55.5% and 50.3% with purities of 91% and 85% for MCF-7 cells in PBS solutions and simulated serum samples, respectively. The sorted MCF-7 cells showed similar proliferation together with CK19 and EGFR mRNA expression compared with the control cells. The established THE-FADS showed the promising prospects to cellular heterogeneity understanding and personalized medicine.
ISSN:2055-7434