Ultra-sensitive fluorescence-activated droplet single-cell sorting based on Tetramer-HCR-EvaGreen amplification
Abstract The current single-cell analysis technologies such as fluorescence-activated cell sorting (FACS) and fluorescence-activated droplet sorting (FADS) could decipher the cellular heterogeneity but were constrained by low sorting performance and cell viability. Here, an ultra-sensitive single-ce...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2025-01-01
|
Series: | Microsystems & Nanoengineering |
Online Access: | https://doi.org/10.1038/s41378-024-00861-8 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The current single-cell analysis technologies such as fluorescence-activated cell sorting (FACS) and fluorescence-activated droplet sorting (FADS) could decipher the cellular heterogeneity but were constrained by low sorting performance and cell viability. Here, an ultra-sensitive single-cell sorting platform has been developed by integrating the FADS technology with Tetramer-HCR-EvaGreen (THE) fluorescence signal amplification. The THE system produced much higher fluorescence signal than that of the single Tetramer or Tetramer-HCR signal amplification. Upon application to target MCF-7 cells, the platform exhibited high efficacy and selectivity while maintaining more than 95% cell viability. The THE-FADS achieved sorting efficiencies of 55.5% and 50.3% with purities of 91% and 85% for MCF-7 cells in PBS solutions and simulated serum samples, respectively. The sorted MCF-7 cells showed similar proliferation together with CK19 and EGFR mRNA expression compared with the control cells. The established THE-FADS showed the promising prospects to cellular heterogeneity understanding and personalized medicine. |
---|---|
ISSN: | 2055-7434 |