Beneficial Effects of Prebiotic Saccharomyces cerevisiae Mannan on Allergic Asthma Mouse Models
One of the unmet needs for asthma management is a new therapeutic agent with both anti-inflammatory and anti-smooth muscle (ASM) remodeling effects. The mannose receptor (MR) family plays an important role in allergen uptake and processing of major allergens Der p 1 and Fel d 1. We have previously r...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Journal of Immunology Research |
Online Access: | http://dx.doi.org/10.1155/2017/3432701 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the unmet needs for asthma management is a new therapeutic agent with both anti-inflammatory and anti-smooth muscle (ASM) remodeling effects. The mannose receptor (MR) family plays an important role in allergen uptake and processing of major allergens Der p 1 and Fel d 1. We have previously reported that ASM cells express a mannose receptor (ASM-MR) and that mannan derived from Saccharomyces cerevisiae (SC-MN) inhibits mannosyl-rich lysosomal hydrolase-induced bovine ASM cell proliferation. Using a humanized transgenic mouse strain (huASM-MRC2) expressing the human MRC2 receptor in a SM tissue-specific manner, we have demonstrated that ASM hyperplasia/hypertrophy can occur as early as 15 days after allergen challenge in this mouse model and this phenomenon is preventable with SC-MN treatment. This proof-of-concept study would facilitate future development of a potential asthma therapeutic agent with dual function of anti-inflammatory and anti-smooth muscle remodeling effects. |
---|---|
ISSN: | 2314-8861 2314-7156 |