Tuning the Coherent Interaction of an Electron Qubit and a Nuclear Magnon
A central spin qubit interacting coherently with an ensemble of proximal spins can be used to engineer entangled collective states or a multiqubit register. Making full use of this many-body platform requires tuning the interaction between the central spin and its spin register. GaAs quantum dots of...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Physical Society
2025-04-01
|
| Series: | Physical Review X |
| Online Access: | http://doi.org/10.1103/PhysRevX.15.021004 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A central spin qubit interacting coherently with an ensemble of proximal spins can be used to engineer entangled collective states or a multiqubit register. Making full use of this many-body platform requires tuning the interaction between the central spin and its spin register. GaAs quantum dots offer a model realization of the central spin system where an electron qubit interacts with multiple ensembles of ∼10^{4} nuclear spins. In this work, we demonstrate tuning of the interaction between the electron qubit and the nuclear many-body system in a GaAs quantum dot. The homogeneity of the GaAs system allows us to perform high-precision and isotopically selective nuclear sideband spectroscopy, which reveals the single-nucleus electronic Knight field. Together with time-resolved spectroscopy of the nuclear field, this fully characterizes the electron-nuclear interaction for a priori control. An algorithmic feedback sequence selects the nuclear polarization precisely, which adjusts the electron-nuclear exchange interaction in situ via the electronic g-factor anisotropy. This allows us to tune directly the activation rate of a collective nuclear excitation (magnon) and the coherence time of the electron qubit. Our method is applicable to similar central-spin systems and enables the programmable tuning of coherent interactions in the many-body regime. |
|---|---|
| ISSN: | 2160-3308 |