A structural health monitoring data reconstruction method based on VMD and SSA-optimized GRU model
Abstract In the field of Structural Health Monitoring (SHM), complete datasets are fundamental for modal identification analysis and risk prediction. However, data loss due to sensor failures, transmission interruptions, or hardware issues is a common problem. To address this challenge, this study d...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Scientific Reports |
Subjects: | |
Online Access: | https://doi.org/10.1038/s41598-025-86781-7 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract In the field of Structural Health Monitoring (SHM), complete datasets are fundamental for modal identification analysis and risk prediction. However, data loss due to sensor failures, transmission interruptions, or hardware issues is a common problem. To address this challenge, this study develops a method combining Variational Mode Decomposition (VMD) and Sparrow Search Algorithm (SSA)-optimized Gate Recurrent Unit (GRU) for recovering structural response data. The methodology initially employs Variational Mode Decomposition (VMD) to preprocess and decompose the existing data from the target sensor into Intrinsic Mode Functions (IMFs) and residuals. Subsequently, the Gated Recurrent Unit (GRU) network utilizes data from other sensors to reconstruct the IMFs and residuals, ultimately producing the data reconstruction results. During this process, Singular Spectrum Analysis (SSA) is used to optimize the hyperparameters of the GRU network. To validate the effectiveness of this method, we utilized one month of monitoring data collected from a certain project and a publicly available dataset. On the public dataset, we tested performance at different data loss rates. Results show that, compared to a standalone GRU model and a VMD + GRU model, the VMD + SSA + GRU model’s reconstruction data root mean squared error is reduced by 46.61% and 32.57% on average, respectively, while the coefficient of determination increases by 38.74% and 18.50%. The data reconstruction method proposed in this study can accurately capture trends in missing data, without the need for manual hyperparameter tuning, and the reconstruction results are highly consistent with the real data. |
---|---|
ISSN: | 2045-2322 |