Orbitrap noise structure and method for noise unbiased multivariate analysis

Abstract Orbitrap mass spectrometry is widely used in the life-sciences. However, like all mass spectrometers, non-uniform (heteroscedastic) noise introduces bias in multivariate analysis complicating data interpretation. Here, we study the noise structure of an Orbitrap mass analyser integrated int...

Full description

Saved in:
Bibliographic Details
Main Authors: Michael R. Keenan, Gustavo F. Trindade, Alexander Pirkl, Clare L. Newell, Yuhong Jin, Konstantin Aizikov, Andreas Dannhorn, Junting Zhang, Lidija Matjačić, Henrik Arlinghaus, Anya Eyres, Rasmus Havelund, Richard J. A. Goodwin, Zoltan Takats, Josephine Bunch, Alex P. Gould, Alexander Makarov, Ian S. Gilmore
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-61542-2
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849331625681223680
author Michael R. Keenan
Gustavo F. Trindade
Alexander Pirkl
Clare L. Newell
Yuhong Jin
Konstantin Aizikov
Andreas Dannhorn
Junting Zhang
Lidija Matjačić
Henrik Arlinghaus
Anya Eyres
Rasmus Havelund
Richard J. A. Goodwin
Zoltan Takats
Josephine Bunch
Alex P. Gould
Alexander Makarov
Ian S. Gilmore
author_facet Michael R. Keenan
Gustavo F. Trindade
Alexander Pirkl
Clare L. Newell
Yuhong Jin
Konstantin Aizikov
Andreas Dannhorn
Junting Zhang
Lidija Matjačić
Henrik Arlinghaus
Anya Eyres
Rasmus Havelund
Richard J. A. Goodwin
Zoltan Takats
Josephine Bunch
Alex P. Gould
Alexander Makarov
Ian S. Gilmore
author_sort Michael R. Keenan
collection DOAJ
description Abstract Orbitrap mass spectrometry is widely used in the life-sciences. However, like all mass spectrometers, non-uniform (heteroscedastic) noise introduces bias in multivariate analysis complicating data interpretation. Here, we study the noise structure of an Orbitrap mass analyser integrated into a secondary ion mass spectrometer (OrbiSIMS). Using a stable primary ion beam to provide a well-controlled source of ions from a silver sample, we find that noise has three characteristic regimes: at low signals the Orbitrap detector noise and a censoring algorithm dominates; at intermediate signals counting noise specific to the ion emission process is most significant; and at high signals additional sources of measurement variation become important. Using this understanding, we developed a generative model for Orbitrap data that accounts for the noise distribution and introduce a scaling method, termed WSoR, to reduce the effects of noise bias in multivariate analysis. We compare WSoR performance with no-scaling and existing scaling methods for three biological imaging data sets including drosophila central nervous system, mouse testis and a desorption electrospray ionisation (DESI) image of a rat liver. WSoR consistently performed best at discriminating chemical information from noise. The performance of the other methods varied on a case-by-case basis, complicating the analysis.
format Article
id doaj-art-0473844ed1a24347a2808eb46962608a
institution Kabale University
issn 2041-1723
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-0473844ed1a24347a2808eb46962608a2025-08-20T03:46:28ZengNature PortfolioNature Communications2041-17232025-07-0116111710.1038/s41467-025-61542-2Orbitrap noise structure and method for noise unbiased multivariate analysisMichael R. Keenan0Gustavo F. Trindade1Alexander Pirkl2Clare L. Newell3Yuhong Jin4Konstantin Aizikov5Andreas Dannhorn6Junting Zhang7Lidija Matjačić8Henrik Arlinghaus9Anya Eyres10Rasmus Havelund11Richard J. A. Goodwin12Zoltan Takats13Josephine Bunch14Alex P. Gould15Alexander Makarov16Ian S. Gilmore17IndependentNational Physical Laboratory, NiCE-MSIIONTOF GmbHThe Francis Crick InstituteThe Francis Crick InstituteThermo Fisher ScientificAstraZenecaNational Physical Laboratory, NiCE-MSINational Physical Laboratory, NiCE-MSIIONTOF GmbHNational Physical Laboratory, NiCE-MSINational Physical Laboratory, NiCE-MSIAstraZenecaImperial College LondonNational Physical Laboratory, NiCE-MSIThe Francis Crick InstituteThermo Fisher ScientificNational Physical Laboratory, NiCE-MSIAbstract Orbitrap mass spectrometry is widely used in the life-sciences. However, like all mass spectrometers, non-uniform (heteroscedastic) noise introduces bias in multivariate analysis complicating data interpretation. Here, we study the noise structure of an Orbitrap mass analyser integrated into a secondary ion mass spectrometer (OrbiSIMS). Using a stable primary ion beam to provide a well-controlled source of ions from a silver sample, we find that noise has three characteristic regimes: at low signals the Orbitrap detector noise and a censoring algorithm dominates; at intermediate signals counting noise specific to the ion emission process is most significant; and at high signals additional sources of measurement variation become important. Using this understanding, we developed a generative model for Orbitrap data that accounts for the noise distribution and introduce a scaling method, termed WSoR, to reduce the effects of noise bias in multivariate analysis. We compare WSoR performance with no-scaling and existing scaling methods for three biological imaging data sets including drosophila central nervous system, mouse testis and a desorption electrospray ionisation (DESI) image of a rat liver. WSoR consistently performed best at discriminating chemical information from noise. The performance of the other methods varied on a case-by-case basis, complicating the analysis.https://doi.org/10.1038/s41467-025-61542-2
spellingShingle Michael R. Keenan
Gustavo F. Trindade
Alexander Pirkl
Clare L. Newell
Yuhong Jin
Konstantin Aizikov
Andreas Dannhorn
Junting Zhang
Lidija Matjačić
Henrik Arlinghaus
Anya Eyres
Rasmus Havelund
Richard J. A. Goodwin
Zoltan Takats
Josephine Bunch
Alex P. Gould
Alexander Makarov
Ian S. Gilmore
Orbitrap noise structure and method for noise unbiased multivariate analysis
Nature Communications
title Orbitrap noise structure and method for noise unbiased multivariate analysis
title_full Orbitrap noise structure and method for noise unbiased multivariate analysis
title_fullStr Orbitrap noise structure and method for noise unbiased multivariate analysis
title_full_unstemmed Orbitrap noise structure and method for noise unbiased multivariate analysis
title_short Orbitrap noise structure and method for noise unbiased multivariate analysis
title_sort orbitrap noise structure and method for noise unbiased multivariate analysis
url https://doi.org/10.1038/s41467-025-61542-2
work_keys_str_mv AT michaelrkeenan orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT gustavoftrindade orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT alexanderpirkl orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT clarelnewell orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT yuhongjin orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT konstantinaizikov orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT andreasdannhorn orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT juntingzhang orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT lidijamatjacic orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT henrikarlinghaus orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT anyaeyres orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT rasmushavelund orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT richardjagoodwin orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT zoltantakats orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT josephinebunch orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT alexpgould orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT alexandermakarov orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis
AT iansgilmore orbitrapnoisestructureandmethodfornoiseunbiasedmultivariateanalysis