Orbitrap noise structure and method for noise unbiased multivariate analysis
Abstract Orbitrap mass spectrometry is widely used in the life-sciences. However, like all mass spectrometers, non-uniform (heteroscedastic) noise introduces bias in multivariate analysis complicating data interpretation. Here, we study the noise structure of an Orbitrap mass analyser integrated int...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-61542-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Orbitrap mass spectrometry is widely used in the life-sciences. However, like all mass spectrometers, non-uniform (heteroscedastic) noise introduces bias in multivariate analysis complicating data interpretation. Here, we study the noise structure of an Orbitrap mass analyser integrated into a secondary ion mass spectrometer (OrbiSIMS). Using a stable primary ion beam to provide a well-controlled source of ions from a silver sample, we find that noise has three characteristic regimes: at low signals the Orbitrap detector noise and a censoring algorithm dominates; at intermediate signals counting noise specific to the ion emission process is most significant; and at high signals additional sources of measurement variation become important. Using this understanding, we developed a generative model for Orbitrap data that accounts for the noise distribution and introduce a scaling method, termed WSoR, to reduce the effects of noise bias in multivariate analysis. We compare WSoR performance with no-scaling and existing scaling methods for three biological imaging data sets including drosophila central nervous system, mouse testis and a desorption electrospray ionisation (DESI) image of a rat liver. WSoR consistently performed best at discriminating chemical information from noise. The performance of the other methods varied on a case-by-case basis, complicating the analysis. |
|---|---|
| ISSN: | 2041-1723 |