Integral mean estimates for polynomials whose zeros are within a circle

Let p(z) be a polynomial of degree n having all its zeros in |z|≤k;  k≤1, then for each r>0, p>1, q>1 with p−1+q−1=1, Aziz and Ahemad (1996) recently proved that n{∫02π|p(eiθ)|rdθ}1/r≤{∫02π|1+keiθ|prdθ}1/pr{∫02π|p′(eiθ)|qrdθ}1/qr. In this paper, we extend the above inequality to the class o...

Full description

Saved in:
Bibliographic Details
Main Authors: K. K. Dewan, Abdullah Mir, R. S. Yadav
Format: Article
Language:English
Published: Wiley 2001-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S016117120100607X
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832555509206482944
author K. K. Dewan
Abdullah Mir
R. S. Yadav
author_facet K. K. Dewan
Abdullah Mir
R. S. Yadav
author_sort K. K. Dewan
collection DOAJ
description Let p(z) be a polynomial of degree n having all its zeros in |z|≤k;  k≤1, then for each r>0, p>1, q>1 with p−1+q−1=1, Aziz and Ahemad (1996) recently proved that n{∫02π|p(eiθ)|rdθ}1/r≤{∫02π|1+keiθ|prdθ}1/pr{∫02π|p′(eiθ)|qrdθ}1/qr. In this paper, we extend the above inequality to the class of polynomials p(z)=anzn+∑v=μnan−vzn−v;1≤μ≤n having all its zeros in |z|≤k;  k≤1 and obtain a generalization as well as a refinement of the above result.
format Article
id doaj-art-042772db1cea4b9ca988930ba53b674c
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2001-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-042772db1cea4b9ca988930ba53b674c2025-02-03T05:47:57ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252001-01-0128423123510.1155/S016117120100607XIntegral mean estimates for polynomials whose zeros are within a circleK. K. Dewan0Abdullah Mir1R. S. Yadav2Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, IndiaDepartment of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, IndiaDepartment of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, IndiaLet p(z) be a polynomial of degree n having all its zeros in |z|≤k;  k≤1, then for each r>0, p>1, q>1 with p−1+q−1=1, Aziz and Ahemad (1996) recently proved that n{∫02π|p(eiθ)|rdθ}1/r≤{∫02π|1+keiθ|prdθ}1/pr{∫02π|p′(eiθ)|qrdθ}1/qr. In this paper, we extend the above inequality to the class of polynomials p(z)=anzn+∑v=μnan−vzn−v;1≤μ≤n having all its zeros in |z|≤k;  k≤1 and obtain a generalization as well as a refinement of the above result.http://dx.doi.org/10.1155/S016117120100607X
spellingShingle K. K. Dewan
Abdullah Mir
R. S. Yadav
Integral mean estimates for polynomials whose zeros are within a circle
International Journal of Mathematics and Mathematical Sciences
title Integral mean estimates for polynomials whose zeros are within a circle
title_full Integral mean estimates for polynomials whose zeros are within a circle
title_fullStr Integral mean estimates for polynomials whose zeros are within a circle
title_full_unstemmed Integral mean estimates for polynomials whose zeros are within a circle
title_short Integral mean estimates for polynomials whose zeros are within a circle
title_sort integral mean estimates for polynomials whose zeros are within a circle
url http://dx.doi.org/10.1155/S016117120100607X
work_keys_str_mv AT kkdewan integralmeanestimatesforpolynomialswhosezerosarewithinacircle
AT abdullahmir integralmeanestimatesforpolynomialswhosezerosarewithinacircle
AT rsyadav integralmeanestimatesforpolynomialswhosezerosarewithinacircle