Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling

Abstract Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State‐of‐the‐art one‐source evaporation models use remotely sensed radiometric surface tempera...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaniska Mallick, Dennis Baldocchi, Andrew Jarvis, Tian Hu, Ivonne Trebs, Mauro Sulis, Nishan Bhattarai, Christian Bossung, Yomna Eid, Jamie Cleverly, Jason Beringer, William Woodgate, Richard Silberstein, Nina Hinko‐Najera, Wayne S. Meyer, Darren Ghent, Zoltan Szantoi, Gilles Boulet, William P. Kustas
Format: Article
Language:English
Published: Wiley 2022-08-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2021GL097568
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850202861529464832
author Kaniska Mallick
Dennis Baldocchi
Andrew Jarvis
Tian Hu
Ivonne Trebs
Mauro Sulis
Nishan Bhattarai
Christian Bossung
Yomna Eid
Jamie Cleverly
Jason Beringer
William Woodgate
Richard Silberstein
Nina Hinko‐Najera
Wayne S. Meyer
Darren Ghent
Zoltan Szantoi
Gilles Boulet
William P. Kustas
author_facet Kaniska Mallick
Dennis Baldocchi
Andrew Jarvis
Tian Hu
Ivonne Trebs
Mauro Sulis
Nishan Bhattarai
Christian Bossung
Yomna Eid
Jamie Cleverly
Jason Beringer
William Woodgate
Richard Silberstein
Nina Hinko‐Najera
Wayne S. Meyer
Darren Ghent
Zoltan Szantoi
Gilles Boulet
William P. Kustas
author_sort Kaniska Mallick
collection DOAJ
description Abstract Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State‐of‐the‐art one‐source evaporation models use remotely sensed radiometric surface temperature as a substitute for the aerodynamic temperature and apply empirical corrections to accommodate for their inequality. This introduces substantial uncertainty in operational drought mapping over complex landscapes. By employing a non‐parametric model, we show that evaporation can be directly retrieved from thermal satellite data without the need of any empirical correction. Independent evaluation of evaporation in a broad spectrum of biome and aridity yielded statistically significant results when compared with eddy covariance observations. While our simplified model provides a new perspective to advance spatio‐temporal evaporation mapping from any thermal remote sensing mission, the direct retrieval of aerodynamic temperature also generates the highly required insight on the critical role of biophysical interactions in global evaporation research.
format Article
id doaj-art-03eaea29cf6f4751a09a5fd18ac18b02
institution OA Journals
issn 0094-8276
1944-8007
language English
publishDate 2022-08-01
publisher Wiley
record_format Article
series Geophysical Research Letters
spelling doaj-art-03eaea29cf6f4751a09a5fd18ac18b022025-08-20T02:11:38ZengWileyGeophysical Research Letters0094-82761944-80072022-08-014915n/an/a10.1029/2021GL097568Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation ModelingKaniska Mallick0Dennis Baldocchi1Andrew Jarvis2Tian Hu3Ivonne Trebs4Mauro Sulis5Nishan Bhattarai6Christian Bossung7Yomna Eid8Jamie Cleverly9Jason Beringer10William Woodgate11Richard Silberstein12Nina Hinko‐Najera13Wayne S. Meyer14Darren Ghent15Zoltan Szantoi16Gilles Boulet17William P. Kustas18Department of Environmental Research and Innovation Luxembourg Institute of Science and Technology Belvaux LuxembourgDepartment of Environmental Science Policy and Management University of California Berkeley CA USALancaster Environment Centre Lancaster University Lancaster UKDepartment of Environmental Research and Innovation Luxembourg Institute of Science and Technology Belvaux LuxembourgDepartment of Environmental Research and Innovation Luxembourg Institute of Science and Technology Belvaux LuxembourgDepartment of Environmental Research and Innovation Luxembourg Institute of Science and Technology Belvaux LuxembourgHydrology and Remote Sensing Laboratory USDA‐ARS Beltsville MD USADepartment of Environmental Research and Innovation Luxembourg Institute of Science and Technology Belvaux LuxembourgThe Julius Maximilians University of Würzburg Wurzburg GermanyTerrestrial Ecosystem Research Network College of Science and Engineering James Cook University Cairns QLD AustraliaSchool of Agriculture and Environment The University of Western Australia Perth WA AustraliaSchool of Earth and Environment The University of Western Australia Perth WA AustraliaSchool of Agriculture and Environment The University of Western Australia Perth WA AustraliaSchool of Ecosystem and Forest Sciences The University of Melbourne Creswick VIC AustraliaSchool of Biological Sciences University of Adelaide Adelaide SA AustraliaDepartment of Physics and Astronomy University of Leicester Leicester UKScience, Applications & Climate Department European Space Agency Frascati ItalyCentre d'Etudes Spatiales de la Biosphère Toulouse FranceHydrology and Remote Sensing Laboratory USDA‐ARS Beltsville MD USAAbstract Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State‐of‐the‐art one‐source evaporation models use remotely sensed radiometric surface temperature as a substitute for the aerodynamic temperature and apply empirical corrections to accommodate for their inequality. This introduces substantial uncertainty in operational drought mapping over complex landscapes. By employing a non‐parametric model, we show that evaporation can be directly retrieved from thermal satellite data without the need of any empirical correction. Independent evaluation of evaporation in a broad spectrum of biome and aridity yielded statistically significant results when compared with eddy covariance observations. While our simplified model provides a new perspective to advance spatio‐temporal evaporation mapping from any thermal remote sensing mission, the direct retrieval of aerodynamic temperature also generates the highly required insight on the critical role of biophysical interactions in global evaporation research.https://doi.org/10.1029/2021GL097568evaporationaerodynamic temperaturethermal remote sensingwater stresscanopy conductanceVPD
spellingShingle Kaniska Mallick
Dennis Baldocchi
Andrew Jarvis
Tian Hu
Ivonne Trebs
Mauro Sulis
Nishan Bhattarai
Christian Bossung
Yomna Eid
Jamie Cleverly
Jason Beringer
William Woodgate
Richard Silberstein
Nina Hinko‐Najera
Wayne S. Meyer
Darren Ghent
Zoltan Szantoi
Gilles Boulet
William P. Kustas
Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling
Geophysical Research Letters
evaporation
aerodynamic temperature
thermal remote sensing
water stress
canopy conductance
VPD
title Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling
title_full Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling
title_fullStr Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling
title_full_unstemmed Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling
title_short Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling
title_sort insights into the aerodynamic versus radiometric surface temperature debate in thermal based evaporation modeling
topic evaporation
aerodynamic temperature
thermal remote sensing
water stress
canopy conductance
VPD
url https://doi.org/10.1029/2021GL097568
work_keys_str_mv AT kaniskamallick insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT dennisbaldocchi insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT andrewjarvis insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT tianhu insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT ivonnetrebs insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT maurosulis insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT nishanbhattarai insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT christianbossung insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT yomnaeid insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT jamiecleverly insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT jasonberinger insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT williamwoodgate insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT richardsilberstein insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT ninahinkonajera insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT waynesmeyer insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT darrenghent insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT zoltanszantoi insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT gillesboulet insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling
AT williampkustas insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling