Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling
Abstract Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State‐of‐the‐art one‐source evaporation models use remotely sensed radiometric surface tempera...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2022-08-01
|
| Series: | Geophysical Research Letters |
| Subjects: | |
| Online Access: | https://doi.org/10.1029/2021GL097568 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850202861529464832 |
|---|---|
| author | Kaniska Mallick Dennis Baldocchi Andrew Jarvis Tian Hu Ivonne Trebs Mauro Sulis Nishan Bhattarai Christian Bossung Yomna Eid Jamie Cleverly Jason Beringer William Woodgate Richard Silberstein Nina Hinko‐Najera Wayne S. Meyer Darren Ghent Zoltan Szantoi Gilles Boulet William P. Kustas |
| author_facet | Kaniska Mallick Dennis Baldocchi Andrew Jarvis Tian Hu Ivonne Trebs Mauro Sulis Nishan Bhattarai Christian Bossung Yomna Eid Jamie Cleverly Jason Beringer William Woodgate Richard Silberstein Nina Hinko‐Najera Wayne S. Meyer Darren Ghent Zoltan Szantoi Gilles Boulet William P. Kustas |
| author_sort | Kaniska Mallick |
| collection | DOAJ |
| description | Abstract Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State‐of‐the‐art one‐source evaporation models use remotely sensed radiometric surface temperature as a substitute for the aerodynamic temperature and apply empirical corrections to accommodate for their inequality. This introduces substantial uncertainty in operational drought mapping over complex landscapes. By employing a non‐parametric model, we show that evaporation can be directly retrieved from thermal satellite data without the need of any empirical correction. Independent evaluation of evaporation in a broad spectrum of biome and aridity yielded statistically significant results when compared with eddy covariance observations. While our simplified model provides a new perspective to advance spatio‐temporal evaporation mapping from any thermal remote sensing mission, the direct retrieval of aerodynamic temperature also generates the highly required insight on the critical role of biophysical interactions in global evaporation research. |
| format | Article |
| id | doaj-art-03eaea29cf6f4751a09a5fd18ac18b02 |
| institution | OA Journals |
| issn | 0094-8276 1944-8007 |
| language | English |
| publishDate | 2022-08-01 |
| publisher | Wiley |
| record_format | Article |
| series | Geophysical Research Letters |
| spelling | doaj-art-03eaea29cf6f4751a09a5fd18ac18b022025-08-20T02:11:38ZengWileyGeophysical Research Letters0094-82761944-80072022-08-014915n/an/a10.1029/2021GL097568Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation ModelingKaniska Mallick0Dennis Baldocchi1Andrew Jarvis2Tian Hu3Ivonne Trebs4Mauro Sulis5Nishan Bhattarai6Christian Bossung7Yomna Eid8Jamie Cleverly9Jason Beringer10William Woodgate11Richard Silberstein12Nina Hinko‐Najera13Wayne S. Meyer14Darren Ghent15Zoltan Szantoi16Gilles Boulet17William P. Kustas18Department of Environmental Research and Innovation Luxembourg Institute of Science and Technology Belvaux LuxembourgDepartment of Environmental Science Policy and Management University of California Berkeley CA USALancaster Environment Centre Lancaster University Lancaster UKDepartment of Environmental Research and Innovation Luxembourg Institute of Science and Technology Belvaux LuxembourgDepartment of Environmental Research and Innovation Luxembourg Institute of Science and Technology Belvaux LuxembourgDepartment of Environmental Research and Innovation Luxembourg Institute of Science and Technology Belvaux LuxembourgHydrology and Remote Sensing Laboratory USDA‐ARS Beltsville MD USADepartment of Environmental Research and Innovation Luxembourg Institute of Science and Technology Belvaux LuxembourgThe Julius Maximilians University of Würzburg Wurzburg GermanyTerrestrial Ecosystem Research Network College of Science and Engineering James Cook University Cairns QLD AustraliaSchool of Agriculture and Environment The University of Western Australia Perth WA AustraliaSchool of Earth and Environment The University of Western Australia Perth WA AustraliaSchool of Agriculture and Environment The University of Western Australia Perth WA AustraliaSchool of Ecosystem and Forest Sciences The University of Melbourne Creswick VIC AustraliaSchool of Biological Sciences University of Adelaide Adelaide SA AustraliaDepartment of Physics and Astronomy University of Leicester Leicester UKScience, Applications & Climate Department European Space Agency Frascati ItalyCentre d'Etudes Spatiales de la Biosphère Toulouse FranceHydrology and Remote Sensing Laboratory USDA‐ARS Beltsville MD USAAbstract Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State‐of‐the‐art one‐source evaporation models use remotely sensed radiometric surface temperature as a substitute for the aerodynamic temperature and apply empirical corrections to accommodate for their inequality. This introduces substantial uncertainty in operational drought mapping over complex landscapes. By employing a non‐parametric model, we show that evaporation can be directly retrieved from thermal satellite data without the need of any empirical correction. Independent evaluation of evaporation in a broad spectrum of biome and aridity yielded statistically significant results when compared with eddy covariance observations. While our simplified model provides a new perspective to advance spatio‐temporal evaporation mapping from any thermal remote sensing mission, the direct retrieval of aerodynamic temperature also generates the highly required insight on the critical role of biophysical interactions in global evaporation research.https://doi.org/10.1029/2021GL097568evaporationaerodynamic temperaturethermal remote sensingwater stresscanopy conductanceVPD |
| spellingShingle | Kaniska Mallick Dennis Baldocchi Andrew Jarvis Tian Hu Ivonne Trebs Mauro Sulis Nishan Bhattarai Christian Bossung Yomna Eid Jamie Cleverly Jason Beringer William Woodgate Richard Silberstein Nina Hinko‐Najera Wayne S. Meyer Darren Ghent Zoltan Szantoi Gilles Boulet William P. Kustas Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling Geophysical Research Letters evaporation aerodynamic temperature thermal remote sensing water stress canopy conductance VPD |
| title | Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling |
| title_full | Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling |
| title_fullStr | Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling |
| title_full_unstemmed | Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling |
| title_short | Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal‐Based Evaporation Modeling |
| title_sort | insights into the aerodynamic versus radiometric surface temperature debate in thermal based evaporation modeling |
| topic | evaporation aerodynamic temperature thermal remote sensing water stress canopy conductance VPD |
| url | https://doi.org/10.1029/2021GL097568 |
| work_keys_str_mv | AT kaniskamallick insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT dennisbaldocchi insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT andrewjarvis insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT tianhu insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT ivonnetrebs insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT maurosulis insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT nishanbhattarai insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT christianbossung insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT yomnaeid insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT jamiecleverly insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT jasonberinger insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT williamwoodgate insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT richardsilberstein insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT ninahinkonajera insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT waynesmeyer insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT darrenghent insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT zoltanszantoi insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT gillesboulet insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling AT williampkustas insightsintotheaerodynamicversusradiometricsurfacetemperaturedebateinthermalbasedevaporationmodeling |