Sphere Theorems for <i>σ<sub>k</sub></i>-Einstein Manifolds

A problem that geometers have always been concerned with is when a closed manifold is isometric to a round sphere. A classical result shows that a closed locally conformally flat Einstein manifold is always isometric to a quotient of a round sphere. In this note, we provide the definitions of <in...

Full description

Saved in:
Bibliographic Details
Main Authors: Jingyang Zhong, Xinran Mu
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/68
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589092793090048
author Jingyang Zhong
Xinran Mu
author_facet Jingyang Zhong
Xinran Mu
author_sort Jingyang Zhong
collection DOAJ
description A problem that geometers have always been concerned with is when a closed manifold is isometric to a round sphere. A classical result shows that a closed locally conformally flat Einstein manifold is always isometric to a quotient of a round sphere. In this note, we provide the definitions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mi>k</mi></msub></semantics></math></inline-formula>-curvatures and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mi>k</mi></msub></semantics></math></inline-formula>-Einstein manifolds, and we show that a closed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mi>k</mi></msub></semantics></math></inline-formula>-Einstein manifold under certain pinching conditions of a Weyl curvature and Einstein curvature is isometric to a quotient of a round sphere.
format Article
id doaj-art-03e6cb217efa4a17a84cbfd481697a37
institution Kabale University
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-03e6cb217efa4a17a84cbfd481697a372025-01-24T13:22:19ZengMDPI AGAxioms2075-16802025-01-011416810.3390/axioms14010068Sphere Theorems for <i>σ<sub>k</sub></i>-Einstein ManifoldsJingyang Zhong0Xinran Mu1School of Mathematics and Statistics, Fuzhou University, Fuzhou 350108, ChinaSchool of Mathematics and Statistics, Fuzhou University, Fuzhou 350108, ChinaA problem that geometers have always been concerned with is when a closed manifold is isometric to a round sphere. A classical result shows that a closed locally conformally flat Einstein manifold is always isometric to a quotient of a round sphere. In this note, we provide the definitions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mi>k</mi></msub></semantics></math></inline-formula>-curvatures and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mi>k</mi></msub></semantics></math></inline-formula>-Einstein manifolds, and we show that a closed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mi>k</mi></msub></semantics></math></inline-formula>-Einstein manifold under certain pinching conditions of a Weyl curvature and Einstein curvature is isometric to a quotient of a round sphere.https://www.mdpi.com/2075-1680/14/1/68scalar curvatureEinstein manifoldsphere theorem<i>σ<sub>k</sub></i>-Einstein manifolds<i>σ<sub>k</sub></i>-curvatures
spellingShingle Jingyang Zhong
Xinran Mu
Sphere Theorems for <i>σ<sub>k</sub></i>-Einstein Manifolds
Axioms
scalar curvature
Einstein manifold
sphere theorem
<i>σ<sub>k</sub></i>-Einstein manifolds
<i>σ<sub>k</sub></i>-curvatures
title Sphere Theorems for <i>σ<sub>k</sub></i>-Einstein Manifolds
title_full Sphere Theorems for <i>σ<sub>k</sub></i>-Einstein Manifolds
title_fullStr Sphere Theorems for <i>σ<sub>k</sub></i>-Einstein Manifolds
title_full_unstemmed Sphere Theorems for <i>σ<sub>k</sub></i>-Einstein Manifolds
title_short Sphere Theorems for <i>σ<sub>k</sub></i>-Einstein Manifolds
title_sort sphere theorems for i σ sub k sub i einstein manifolds
topic scalar curvature
Einstein manifold
sphere theorem
<i>σ<sub>k</sub></i>-Einstein manifolds
<i>σ<sub>k</sub></i>-curvatures
url https://www.mdpi.com/2075-1680/14/1/68
work_keys_str_mv AT jingyangzhong spheretheoremsforissubksubieinsteinmanifolds
AT xinranmu spheretheoremsforissubksubieinsteinmanifolds