Flow field and heat transfer characteristics in dimple pipe with different shape of dimples
In this work, a numerical study of a thermal performance of water flow inside a dimpled pipe. The effect of three types of dimples (circular, square and rhombus) studied in the numerical simulation. A commercial program called ANSYS was used to model the flow through a circular pipe .The three-dime...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wasit University
2024-04-01
|
| Series: | Wasit Journal of Engineering Sciences |
| Subjects: | |
| Online Access: | https://ejuow.uowasit.edu.iq/index.php/ejuow/article/view/515 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this work, a numerical study of a thermal performance of water flow inside a dimpled pipe. The effect of three types of dimples (circular, square and rhombus) studied in the numerical simulation. A commercial program called ANSYS was used to model the flow through a circular pipe .The three-dimensional governing differential equations of mass, momentum, and energy were used together with the (K − ε ) model to evaluate the impact of dimples on a turbulent flow and the velocity field. The study was carried out in the Reynolds number (Re) range (2500–15000). The research results demonstrate that the presence of a dimple on the pipe surface greatly increases the rate of heat transmission and the friction factor compared to a normal smooth pipe. Also, the numerical study demonstrated that the Nusselt number (Nu) in case of circular dimples at diameter (4 , 6 and 8) mm was (22, 28 and 43) % greater than the smooth surface. It is discovered that the improved pipe with circular dimples have a benefit for increased heat transmission efficiency compared with the square and rhombus dimples. Additionally , circular dimples have the ability to supply the lowest friction factor (f) when compared to other types of dimple. The pipe with circular dimples with D= 4mm , at Reynolds number 2500 provided the largest thermal performance criterion (PEC) value about 1.44.
|
|---|---|
| ISSN: | 2305-6932 2663-1970 |