<i>Tribulus terrestris</i> Fruit Extract: Bioactive Compounds, ADMET Analysis, and Molecular Docking with Penicillin-Binding Protein 2a Transpeptidase of Methicillin-Resistant <i>Staphylococcus epidermidis</i>
<i>Tribulus terrestris</i> is a rich source of bioactive molecules and thrives in Mediterranean and desert climate regions worldwide. In this study, <i>Tribulus terrestris</i> methanolic HPLC fractions were evaluated for bioactive compounds and PBP2a transpeptidase inhibitors...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Current Issues in Molecular Biology |
Subjects: | |
Online Access: | https://www.mdpi.com/1467-3045/47/1/52 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832588741201362944 |
---|---|
author | Khalid J. Alzahrani |
author_facet | Khalid J. Alzahrani |
author_sort | Khalid J. Alzahrani |
collection | DOAJ |
description | <i>Tribulus terrestris</i> is a rich source of bioactive molecules and thrives in Mediterranean and desert climate regions worldwide. In this study, <i>Tribulus terrestris</i> methanolic HPLC fractions were evaluated for bioactive compounds and PBP2a transpeptidase inhibitors against methicillin-resistant <i>Staphylococcus epidermidis</i> (MRSE). Among the collected HPLC fractions, F02 of the methanol extract demonstrated potential activity against MRSE01 (15 ± 0.13 mm), MRSE02 (13 ± 0.21 mm), and MRSE03 (16 ± 0.14 mm) isolates. GC-MS analysis of the F02 fraction identified seventeen compounds. Among seventeen compounds, eight have favorable pharmacokinetics and medicinal chemistry; however, on the basis of in silico high water solubility, high GI absorption, blood–brain barrier non-permeability, lack of toxicity, and potential drug-likeness, 1-ethylsulfanylmethyl-2,8,9-trioxa-5-aza-1-sila-bicyclo[3.3.3]undecane and phthalimide, N-(1-hydroxy-2-propyl), were processed for molecular docking. 1-ethylsulfanylmethyl-2,8,9-trioxa-5-aza-1-sila-bicyclo[3.3.3]undecane formed three hydrogen bonds with Ser-452, Thr-584, and Asn-454 residues of the PBP2a transpeptidase. Similarly, phthalimide, N-(1-hydroxy-2-propyl)-formed four hydrogen bonds with Ser-396, Asn-454, Lys-399, and Ser-452 residues of PBP2a transpeptidase. These two compounds are proposed as novel putative PBP2a transpeptidase inhibitors. Further characterization of compounds extracted from <i>Tribulus terrestris</i> may aid in identifying novel PBP2a inhibitory agents for managing MRSE infections. |
format | Article |
id | doaj-art-0383536c84e84882975432957cd1d955 |
institution | Kabale University |
issn | 1467-3037 1467-3045 |
language | English |
publishDate | 2025-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Current Issues in Molecular Biology |
spelling | doaj-art-0383536c84e84882975432957cd1d9552025-01-24T13:27:33ZengMDPI AGCurrent Issues in Molecular Biology1467-30371467-30452025-01-014715210.3390/cimb47010052<i>Tribulus terrestris</i> Fruit Extract: Bioactive Compounds, ADMET Analysis, and Molecular Docking with Penicillin-Binding Protein 2a Transpeptidase of Methicillin-Resistant <i>Staphylococcus epidermidis</i>Khalid J. Alzahrani0Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia<i>Tribulus terrestris</i> is a rich source of bioactive molecules and thrives in Mediterranean and desert climate regions worldwide. In this study, <i>Tribulus terrestris</i> methanolic HPLC fractions were evaluated for bioactive compounds and PBP2a transpeptidase inhibitors against methicillin-resistant <i>Staphylococcus epidermidis</i> (MRSE). Among the collected HPLC fractions, F02 of the methanol extract demonstrated potential activity against MRSE01 (15 ± 0.13 mm), MRSE02 (13 ± 0.21 mm), and MRSE03 (16 ± 0.14 mm) isolates. GC-MS analysis of the F02 fraction identified seventeen compounds. Among seventeen compounds, eight have favorable pharmacokinetics and medicinal chemistry; however, on the basis of in silico high water solubility, high GI absorption, blood–brain barrier non-permeability, lack of toxicity, and potential drug-likeness, 1-ethylsulfanylmethyl-2,8,9-trioxa-5-aza-1-sila-bicyclo[3.3.3]undecane and phthalimide, N-(1-hydroxy-2-propyl), were processed for molecular docking. 1-ethylsulfanylmethyl-2,8,9-trioxa-5-aza-1-sila-bicyclo[3.3.3]undecane formed three hydrogen bonds with Ser-452, Thr-584, and Asn-454 residues of the PBP2a transpeptidase. Similarly, phthalimide, N-(1-hydroxy-2-propyl)-formed four hydrogen bonds with Ser-396, Asn-454, Lys-399, and Ser-452 residues of PBP2a transpeptidase. These two compounds are proposed as novel putative PBP2a transpeptidase inhibitors. Further characterization of compounds extracted from <i>Tribulus terrestris</i> may aid in identifying novel PBP2a inhibitory agents for managing MRSE infections.https://www.mdpi.com/1467-3045/47/1/52<i>Tribulus terrestris</i>MRSEextractGC-MS analysisdruggable characteristicsADMET |
spellingShingle | Khalid J. Alzahrani <i>Tribulus terrestris</i> Fruit Extract: Bioactive Compounds, ADMET Analysis, and Molecular Docking with Penicillin-Binding Protein 2a Transpeptidase of Methicillin-Resistant <i>Staphylococcus epidermidis</i> Current Issues in Molecular Biology <i>Tribulus terrestris</i> MRSE extract GC-MS analysis druggable characteristics ADMET |
title | <i>Tribulus terrestris</i> Fruit Extract: Bioactive Compounds, ADMET Analysis, and Molecular Docking with Penicillin-Binding Protein 2a Transpeptidase of Methicillin-Resistant <i>Staphylococcus epidermidis</i> |
title_full | <i>Tribulus terrestris</i> Fruit Extract: Bioactive Compounds, ADMET Analysis, and Molecular Docking with Penicillin-Binding Protein 2a Transpeptidase of Methicillin-Resistant <i>Staphylococcus epidermidis</i> |
title_fullStr | <i>Tribulus terrestris</i> Fruit Extract: Bioactive Compounds, ADMET Analysis, and Molecular Docking with Penicillin-Binding Protein 2a Transpeptidase of Methicillin-Resistant <i>Staphylococcus epidermidis</i> |
title_full_unstemmed | <i>Tribulus terrestris</i> Fruit Extract: Bioactive Compounds, ADMET Analysis, and Molecular Docking with Penicillin-Binding Protein 2a Transpeptidase of Methicillin-Resistant <i>Staphylococcus epidermidis</i> |
title_short | <i>Tribulus terrestris</i> Fruit Extract: Bioactive Compounds, ADMET Analysis, and Molecular Docking with Penicillin-Binding Protein 2a Transpeptidase of Methicillin-Resistant <i>Staphylococcus epidermidis</i> |
title_sort | i tribulus terrestris i fruit extract bioactive compounds admet analysis and molecular docking with penicillin binding protein 2a transpeptidase of methicillin resistant i staphylococcus epidermidis i |
topic | <i>Tribulus terrestris</i> MRSE extract GC-MS analysis druggable characteristics ADMET |
url | https://www.mdpi.com/1467-3045/47/1/52 |
work_keys_str_mv | AT khalidjalzahrani itribulusterrestrisifruitextractbioactivecompoundsadmetanalysisandmoleculardockingwithpenicillinbindingprotein2atranspeptidaseofmethicillinresistantistaphylococcusepidermidisi |