Factor Rings with Algebraic Identities via Generalized Derivations

The current article focuses on studying the behavior of a ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>ℜ</mo><mo>/</mo><mo>Π</mo></mrow></semantics&...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali Yahya Hummdi, Zakia Z. Al-Amery, Radwan M. Al-omary
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/15
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589092039163904
author Ali Yahya Hummdi
Zakia Z. Al-Amery
Radwan M. Al-omary
author_facet Ali Yahya Hummdi
Zakia Z. Al-Amery
Radwan M. Al-omary
author_sort Ali Yahya Hummdi
collection DOAJ
description The current article focuses on studying the behavior of a ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>ℜ</mo><mo>/</mo><mo>Π</mo></mrow></semantics></math></inline-formula> when <i>ℜ</i> admits generalized derivations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ψ</mo></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> with associated derivations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>, respectively. These derivations satisfy specific differential identities involving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Π</mo></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Π</mo></semantics></math></inline-formula> is a prime ideal of an arbitrary ring <i>ℜ</i>, not necessarily prime or semiprime. Furthermore, we explore some consequences of our findings. To emphasize the necessity of the primeness of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Π</mo></semantics></math></inline-formula> in the hypotheses of our various theorems, we provide a list of examples.
format Article
id doaj-art-037d26985c564950a32ad6727d8afbdb
institution Kabale University
issn 2075-1680
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-037d26985c564950a32ad6727d8afbdb2025-01-24T13:22:09ZengMDPI AGAxioms2075-16802024-12-011411510.3390/axioms14010015Factor Rings with Algebraic Identities via Generalized DerivationsAli Yahya Hummdi0Zakia Z. Al-Amery1Radwan M. Al-omary2Department of Mathematics, College of Science, King Khalid University, Abha 61471, Saudi ArabiaDepartment of Mathematics, Aden University, Aden 5243, YemenDepartment of Mathematics, Ibb University, Ibb 70270, YemenThe current article focuses on studying the behavior of a ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>ℜ</mo><mo>/</mo><mo>Π</mo></mrow></semantics></math></inline-formula> when <i>ℜ</i> admits generalized derivations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ψ</mo></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> with associated derivations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>, respectively. These derivations satisfy specific differential identities involving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Π</mo></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Π</mo></semantics></math></inline-formula> is a prime ideal of an arbitrary ring <i>ℜ</i>, not necessarily prime or semiprime. Furthermore, we explore some consequences of our findings. To emphasize the necessity of the primeness of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Π</mo></semantics></math></inline-formula> in the hypotheses of our various theorems, we provide a list of examples.https://www.mdpi.com/2075-1680/14/1/15prime idealfactor ringintegral domaingeneralized derivations
spellingShingle Ali Yahya Hummdi
Zakia Z. Al-Amery
Radwan M. Al-omary
Factor Rings with Algebraic Identities via Generalized Derivations
Axioms
prime ideal
factor ring
integral domain
generalized derivations
title Factor Rings with Algebraic Identities via Generalized Derivations
title_full Factor Rings with Algebraic Identities via Generalized Derivations
title_fullStr Factor Rings with Algebraic Identities via Generalized Derivations
title_full_unstemmed Factor Rings with Algebraic Identities via Generalized Derivations
title_short Factor Rings with Algebraic Identities via Generalized Derivations
title_sort factor rings with algebraic identities via generalized derivations
topic prime ideal
factor ring
integral domain
generalized derivations
url https://www.mdpi.com/2075-1680/14/1/15
work_keys_str_mv AT aliyahyahummdi factorringswithalgebraicidentitiesviageneralizedderivations
AT zakiazalamery factorringswithalgebraicidentitiesviageneralizedderivations
AT radwanmalomary factorringswithalgebraicidentitiesviageneralizedderivations