Pseudoinversion of degenerate metrics

Let (M,g) be a smooth manifold M endowed with a metric g. A large class of differential operators in differential geometry is intrinsically defined by means of the dual metric g∗ on the dual bundle TM∗ of 1-forms on M. If the metric g is (semi)-Riemannian, the metric g∗ is just the inverse of g. Thi...

Full description

Saved in:
Bibliographic Details
Main Authors: C. Atindogbe, J.-P. Ezin, Joël Tossa
Format: Article
Language:English
Published: Wiley 2003-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171203301309
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553166054359040
author C. Atindogbe
J.-P. Ezin
Joël Tossa
author_facet C. Atindogbe
J.-P. Ezin
Joël Tossa
author_sort C. Atindogbe
collection DOAJ
description Let (M,g) be a smooth manifold M endowed with a metric g. A large class of differential operators in differential geometry is intrinsically defined by means of the dual metric g∗ on the dual bundle TM∗ of 1-forms on M. If the metric g is (semi)-Riemannian, the metric g∗ is just the inverse of g. This paper studies the definition of the above-mentioned geometric differential operators in the case of manifolds endowed with degenerate metrics for which g∗ is not defined. We apply the theoretical results to Laplacian-type operator on a lightlike hypersurface to deduce a Takahashi-like theorem (Takahashi (1966)) for lightlike hypersurfaces in Lorentzian space ℝ1n+2.
format Article
id doaj-art-03496608b59e4aeeb3500c062c0b23a1
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2003-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-03496608b59e4aeeb3500c062c0b23a12025-02-03T05:54:41ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252003-01-012003553479350110.1155/S0161171203301309Pseudoinversion of degenerate metricsC. Atindogbe0J.-P. Ezin1Joël Tossa2Institut de Mathématiques et de Sciences Physiques (IMSP), Université d'Abomey-Calavi (UAC), Porto-Novo BP 613, BeninInstitut de Mathématiques et de Sciences Physiques (IMSP), Université d'Abomey-Calavi (UAC), Porto-Novo BP 613, BeninInstitut de Mathématiques et de Sciences Physiques (IMSP), Université d'Abomey-Calavi (UAC), Porto-Novo BP 613, BeninLet (M,g) be a smooth manifold M endowed with a metric g. A large class of differential operators in differential geometry is intrinsically defined by means of the dual metric g∗ on the dual bundle TM∗ of 1-forms on M. If the metric g is (semi)-Riemannian, the metric g∗ is just the inverse of g. This paper studies the definition of the above-mentioned geometric differential operators in the case of manifolds endowed with degenerate metrics for which g∗ is not defined. We apply the theoretical results to Laplacian-type operator on a lightlike hypersurface to deduce a Takahashi-like theorem (Takahashi (1966)) for lightlike hypersurfaces in Lorentzian space ℝ1n+2.http://dx.doi.org/10.1155/S0161171203301309
spellingShingle C. Atindogbe
J.-P. Ezin
Joël Tossa
Pseudoinversion of degenerate metrics
International Journal of Mathematics and Mathematical Sciences
title Pseudoinversion of degenerate metrics
title_full Pseudoinversion of degenerate metrics
title_fullStr Pseudoinversion of degenerate metrics
title_full_unstemmed Pseudoinversion of degenerate metrics
title_short Pseudoinversion of degenerate metrics
title_sort pseudoinversion of degenerate metrics
url http://dx.doi.org/10.1155/S0161171203301309
work_keys_str_mv AT catindogbe pseudoinversionofdegeneratemetrics
AT jpezin pseudoinversionofdegeneratemetrics
AT joeltossa pseudoinversionofdegeneratemetrics