Hybridization of DEBOHID with ENN algorithm for highly imbalanced datasets
Machine learning algorithms assume that datasets are balanced, but most of the datasets in the real world are imbalanced. Class imbalance is a major challenge in machine learning and data mining. Oversampling and undersampling methods are commonly used to address this issue. Edited Nearest Neighbor...
Saved in:
Main Author: | Sedat Korkmaz |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-03-01
|
Series: | Engineering Science and Technology, an International Journal |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S221509862500031X |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Hybrid clustering strategies for effective oversampling and undersampling in multiclass classification
by: Amirreza Salehi, et al.
Published: (2025-01-01) -
Machine Learning Algorithms Analysis of Synthetic Minority Oversampling Technique (SMOTE): Application to Credit Default Prediction
by: Emmanuel de-Graft Johnson Owusu-Ansah, et al.
Published: (2024-12-01) -
A novel oversampling method based on Wasserstein CGAN for imbalanced classification
by: Hongfang Zhou, et al.
Published: (2025-02-01) -
Enhancing Telemarketing Success Using Ensemble-Based Online Machine Learning
by: Shahriar Kaisar, et al.
Published: (2024-06-01) -
An improved soft voting-based machine learning technique to detect breast cancer utilizing effective feature selection and SMOTE-ENN class balancing
by: Indu Chhillar, et al.
Published: (2025-01-01)