Applicability of the multifactor dimensionality reduction methodology to the analysis of variables in sanitary buildings

In order to optimise engineering activities, it is necessary to analyse a large amount of data and variables. The objective is to implement MDR to better address the study and propose improvements to reduce energy consumption in Extremadura's health centres. These numerous variables do not have...

Full description

Saved in:
Bibliographic Details
Main Authors: Alejandro Prieto-Fernández, Álvaro Carmona-Baltasar, Jaime Gónzalez-Domínguez, Manuel Botejara-Domínguez, Gonzalo Sánchez-Barroso, Justo García-Sanz-Calcedo
Format: Article
Language:English
Published: Universidad Politécnica de Madrid 2024-03-01
Series:Anales de Edificación
Subjects:
Online Access:https://polired.upm.es/index.php/anales_de_edificacion/article/view/5307
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832096718421753856
author Alejandro Prieto-Fernández
Álvaro Carmona-Baltasar
Jaime Gónzalez-Domínguez
Manuel Botejara-Domínguez
Gonzalo Sánchez-Barroso
Justo García-Sanz-Calcedo
author_facet Alejandro Prieto-Fernández
Álvaro Carmona-Baltasar
Jaime Gónzalez-Domínguez
Manuel Botejara-Domínguez
Gonzalo Sánchez-Barroso
Justo García-Sanz-Calcedo
author_sort Alejandro Prieto-Fernández
collection DOAJ
description In order to optimise engineering activities, it is necessary to analyse a large amount of data and variables. The objective is to implement MDR to better address the study and propose improvements to reduce energy consumption in Extremadura's health centres. These numerous variables do not have direct and quantifiable interactions on energy consumption. To overcome this drawback, it is possible to apply the multifactor dimensionality reduction (MDR) method. MDR uses Machine Learning to search for the best combinations of variables. This makes it possible to create a model that simplifies the analysis of the data studied. From the whole set, the combination of variables that best describes the study is selected, grouping them into high or low risk. It has been proven that in this way it is possible to better understand and optimise engineering activities. MDR can be used in numerous engineering analyses: energy consumption, equipment maintenance, waste generation, etc.
format Article
id doaj-art-01c2b11772824be38458b7a4448fe5e5
institution Kabale University
issn 2444-1309
language English
publishDate 2024-03-01
publisher Universidad Politécnica de Madrid
record_format Article
series Anales de Edificación
spelling doaj-art-01c2b11772824be38458b7a4448fe5e52025-02-05T10:55:14ZengUniversidad Politécnica de MadridAnales de Edificación2444-13092024-03-0191333710.20868/ade.2024.53078224Applicability of the multifactor dimensionality reduction methodology to the analysis of variables in sanitary buildingsAlejandro Prieto-Fernández0https://orcid.org/0000-0001-6716-1085Álvaro Carmona-Baltasar1Jaime Gónzalez-Domínguez2https://orcid.org/0000-0003-4042-1195Manuel Botejara-Domínguez3https://orcid.org/0000-0003-2570-1658Gonzalo Sánchez-Barroso4https://orcid.org/0000-0002-7006-1197Justo García-Sanz-Calcedo5https://orcid.org/0000-0003-4449-2636Escuela de Ingenierías Industriales, Universidad de ExtremaduraEscuela de Ingenierías Industriales, Universidad de ExtremaduraEscuela de Ingenierías Industriales, Universidad de ExtremaduraEscuela de Ingenierías Industriales, Universidad de ExtremaduraEscuela de Ingenierías Industriales, Universidad de ExtremaduraEscuela de Ingenierías Industriales, Universidad de ExtremaduraIn order to optimise engineering activities, it is necessary to analyse a large amount of data and variables. The objective is to implement MDR to better address the study and propose improvements to reduce energy consumption in Extremadura's health centres. These numerous variables do not have direct and quantifiable interactions on energy consumption. To overcome this drawback, it is possible to apply the multifactor dimensionality reduction (MDR) method. MDR uses Machine Learning to search for the best combinations of variables. This makes it possible to create a model that simplifies the analysis of the data studied. From the whole set, the combination of variables that best describes the study is selected, grouping them into high or low risk. It has been proven that in this way it is possible to better understand and optimise engineering activities. MDR can be used in numerous engineering analyses: energy consumption, equipment maintenance, waste generation, etc.https://polired.upm.es/index.php/anales_de_edificacion/article/view/5307multifactor dimensionality reduction; engineering; healthcare building; machine learning; data mining
spellingShingle Alejandro Prieto-Fernández
Álvaro Carmona-Baltasar
Jaime Gónzalez-Domínguez
Manuel Botejara-Domínguez
Gonzalo Sánchez-Barroso
Justo García-Sanz-Calcedo
Applicability of the multifactor dimensionality reduction methodology to the analysis of variables in sanitary buildings
Anales de Edificación
multifactor dimensionality reduction; engineering; healthcare building; machine learning; data mining
title Applicability of the multifactor dimensionality reduction methodology to the analysis of variables in sanitary buildings
title_full Applicability of the multifactor dimensionality reduction methodology to the analysis of variables in sanitary buildings
title_fullStr Applicability of the multifactor dimensionality reduction methodology to the analysis of variables in sanitary buildings
title_full_unstemmed Applicability of the multifactor dimensionality reduction methodology to the analysis of variables in sanitary buildings
title_short Applicability of the multifactor dimensionality reduction methodology to the analysis of variables in sanitary buildings
title_sort applicability of the multifactor dimensionality reduction methodology to the analysis of variables in sanitary buildings
topic multifactor dimensionality reduction; engineering; healthcare building; machine learning; data mining
url https://polired.upm.es/index.php/anales_de_edificacion/article/view/5307
work_keys_str_mv AT alejandroprietofernandez applicabilityofthemultifactordimensionalityreductionmethodologytotheanalysisofvariablesinsanitarybuildings
AT alvarocarmonabaltasar applicabilityofthemultifactordimensionalityreductionmethodologytotheanalysisofvariablesinsanitarybuildings
AT jaimegonzalezdominguez applicabilityofthemultifactordimensionalityreductionmethodologytotheanalysisofvariablesinsanitarybuildings
AT manuelbotejaradominguez applicabilityofthemultifactordimensionalityreductionmethodologytotheanalysisofvariablesinsanitarybuildings
AT gonzalosanchezbarroso applicabilityofthemultifactordimensionalityreductionmethodologytotheanalysisofvariablesinsanitarybuildings
AT justogarciasanzcalcedo applicabilityofthemultifactordimensionalityreductionmethodologytotheanalysisofvariablesinsanitarybuildings