Potential Bias in Volcanic Paleomagnetic Records Due To Superimposed Chemical Remanent Magnetization

Abstract Volcanic rocks, preserving paleorecords of Earth's magnetic field, are essential to constrain the working of the geodynamo, provided their primary signal was not biased. Using a thermomagnetometer, we simulate a situation where a sample's primary record, carried by a thermoremanen...

Full description

Saved in:
Bibliographic Details
Main Authors: V. P. Shcherbakov, F. Lhuillier, S. K. Gribov, V. A. Tselmovich, N. A. Aphinogenova
Format: Article
Language:English
Published: Wiley 2024-06-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2024GL109630
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Volcanic rocks, preserving paleorecords of Earth's magnetic field, are essential to constrain the working of the geodynamo, provided their primary signal was not biased. Using a thermomagnetometer, we simulate a situation where a sample's primary record, carried by a thermoremanence (TRM, acquired by cooling in air from 600°C to room temperature), is partly overprinted by a chemical remanence (CRM, acquired by 200 hr of isothermal exposure at 400°C). This situation leads to two directional and intensity components (in the form of linear segments) in the Zijderveld and Arai‐Nagata diagrams. In the case of unstable titanomagnetite grains prior to CRM acquisition, we show that both components can be strongly biased by up to ∼50° for paleodirections and ∼50% for paleointensities. In such a worst‐case scenario, the secondary CRM strongly overprints the primary TRM, rendering the common interpretation of Zijderveld and Arai‐Nagata diagrams in terms of characteristic components invalid.
ISSN:0094-8276
1944-8007