Modeling Anomalous Transport of Cosmic Rays in the Heliosphere Using a Fractional Fokker–Planck Equation
Cosmic rays exhibit anomalous diffusion behaviors in the heliospheric environment that cannot be adequately described by classical diffusion models. In this paper, we develop a theoretical framework employing a fractional Fokker–Planck equation to model the anomalous transport of cosmic rays. This a...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/9/1/24 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cosmic rays exhibit anomalous diffusion behaviors in the heliospheric environment that cannot be adequately described by classical diffusion models. In this paper, we develop a theoretical framework employing a fractional Fokker–Planck equation to model the anomalous transport of cosmic rays. This approach accounts for the observed non-Gaussian distributions, long-range correlations and memory effects in cosmic ray fluxes. We derive analytical solutions using the Adomian Decomposition Method and express them in terms of Mittag-Leffler functions and Lévy stable distributions. The model parameters, including the fractional orders <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> and the entropic index <i>q</i>, are estimated by a short comparison between theoretical predictions and observational data from cosmic ray experiments. Our findings suggest that the integration of fractional calculus and non-extensive statistics can be employed for describing the cosmic ray propagation and the anomalous diffusion observed in the heliosphere. |
---|---|
ISSN: | 2504-3110 |